
www.manaraa.com

www.manaraa.com

ENGINEERING QUALITY SOFTWARE

Second Edition

www.manaraa.com

ENGINEERING QUALITY
SOFTWARE

A Review of Current Practices,
Standards and Guidelines including

New Methods and Development Tools

Second Edition

DAVID J. SMITH
B.Sc., C.Eng., F.I.E.E., F.I.Q.A., F.Sa.R.S.

Tonbridge, Kent, UK

and

KENNETH B. WOOD
Fleet, Hampshire, UK

ELSEVIER APPLIED SCIENCE
LONDON and NEW YORK

www.manaraa.com

ELSEVIER SCIENCE PUBLISHERS LTD
Crown House, Linton Road, Barking, Essex IGll SJU, England

Sole Distributor in the USA and Canada
ELSEVIER SCIENCE PUBLISHING CO., INC.

655 Avenue of the Americas, New York, NY 10010, USA

WITH 3 TABLES AND 36 ILLUSTRATIONS

First Edition 1989
Reprinted 1990

© 1989 ELSEVIER SCIENCE PUBLISHERS LTD
© 1989 DAVID J. SMITH-Chapter 14

Softcover reprint ofthe hardcover lst edition 1986
British Library Cataloguing in Publication Data

Smith, David J. (David), 1946-
Engineering quality software.
1. Computer systems. Software. Quality control.
I. Title II. Wood, Kenneth B.
05'.14

ISBN·13:978·94·010·6996·0 e·ISBN·13:978·94·009·1121·5
001: 10.1007/978·94·009·1121·5

Library of Congress Cataloging-in-Publication Data

Smith, David John, 1943-
Engineering quality software: a review of current practices,
standards, and guidelines, including new methods and development
tools/ David J. Smith and Kenneth B. Wood.-2nd ed.

p. cm.
Bibliography: p.
Includes index.
ISBN·13:978·94·010·6996·0
1. Software engineering. 2. Computer software-Quality control.

I. Wood, Kenneth B. II. Title.
QA76.758.S55 1989
005.1-dc20

No responsibility is assumed by the Publisher for any injury and/or damage to
persons or property as a matter of products liability, negligence or otherwise, or
from any use or operation of any methods, products, instructions or ideas

contained in the material herein.

Special regulations for readers in the USA
This publication has been registered with the Copyright Clearance Center Inc.
(CCC), Salem, Massachusetts. Information can be obtained from the CCC about
conditions under which photocopies of parts of this publication may be made in
the USA. All other copyright questions, including photocopyirg outside of the

USA, should be referred to the publisher.

All rights reserved. No parts of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written

permission of the publisher.

www.manaraa.com

Preface to the Second Edition

During the 18 months since the publication of the 1st edition the
practice of software quality and the availability of tools and guidance
for its implementation has increased dramatically.

The emphasis on the need for formal methods has increased and
calls for certification of safety critical software are now common. In
particular this 2nd edition:

-Expands the treatment of static analysis and includes a com­
prehensive but simple example in order to illustrate clearly the
functions of each analyser in Chapter 8.

-Describes formal requirements languages more fully in Chapter 6.
-Updates the compendium of available guidelines and standards in

Chapter 5.
-Expands the description of the many high level languages in

Chapter 9.
-Improves and expands the exercise into a 49 page case study

consisting of a documentation hierarchy for a safety system in
Chapter 14. It is seeded with deliberate errors and ambiguities
and now includes guidance in finding them.

v

D. J. Smith
K. B. Wood

www.manaraa.com

Preface to the First Edition

Towards the end of the 1960s there was an awareness of the problem
of software-related failures. It became clear that, with tolerably
reliable hardware, those failures arising purely from aspects of the
software could dominate the total number. Furthermore, compared
with hardware failures they were extremely difficult to diagnose and
impossible to predict due to the limited visibility which exists in
computer software. There was, even at that time, a general feeling
that they related to the structure of the design process which generated
the software.

The result of this was that, by the late 196Os, the term 'structured
programming' had emerged. This heralded the development of block­
structured high level languages (Chapter 9) as a means of disciplining
the production of code. Various programming standards and methods
were created around this idea.

Later in the 1970s the test phase became more formalised and
automated test tools were introduced. It was realised then that test
specifications should be generated from a formal analysis of the
requirements and of the design as it progressed since, with software,
test relies on exercising each function, and combinations of functions,
rather than simply accumulating test time.

By now the software quality activity was an established feature of
the better organisations and various systems, standards and guidelines
began to emerge (Chapters 4 and 5).

In the early 1980s it was thought that the design review activities
similar to code inspection and structured walkthrough should be
automated. The result was the development of static analysers which
are a major contribution to the production of error-free code (Chapter
8).

Ironically, the most important feature of software design-the

vii

www.manaraa.com

Vlll Preface to the First Edition

requirements specification-is only now receiving adequate attention.
Hitherto, and for that matter now, requirements have been expressed
in natural language wherein lies the potential for the ambiguities and
omissions which ultimately lead to software failures. Chapter 6 deals
with the formal techniques which are emerging in this area.

The following dates help to put this into perspective.

1965
1970-1975
1975-1980
1980-1985
1985 onwards

The problem revealed.
Structured programming.
Testing tools.
Code verification and validation.
Formal specification expression.

Software development must evolve by means of more formally
structured and automated techniques. As a result, the role of the
software engineer will evolve from programmer to that of software and
systems engineer.

This book reviews the current state of the art in Parts 1 and 2 and
looks forward in Parts 3 and 4.

D. J. Smith
K. B. Wood

www.manaraa.com

Contents

Preface to the Second Edition. v

Preface to the First Edition. Vll

Acknowledgements. .. xvii

PART 1. THE BACKGROUND TO SOFTWARE
ENGINEERING AND QUALITY

Chapter 1 The Meaning of Quality in Software
1.1 Quality-What is it? 3
1.2 Quality-The Elusive Element 5
1.3 The Software Process----Craft or Science? 6
1.4 Blending Engineering Discipline and Software

Design....................................... 7
1.5 The Conflict between Quality and Time 8
1.6 The Decline of Hardware and the Rise of Software 10

Chapter 2 Software Failures-Causes and Hazards
2.1 Advantages and Disadvantages of Programmable

Systems................................... ... 12
2.2 Software-related Failures-Fault, Error, Failure. . . 15
2.3 Causes of Faults. 16
2.4 Safety Critical Software 18
2.5 Quantifying Software Reliability. 21

Chapter 3 The Effect of the Software Life-cycle on Quality
3.1 The Meaning of 'Life-Cycle' 22
3.2 Achieving Quality Software. 25

ix

www.manaraa.com

x Contents

3.3 Current Practice. 27
3.4 Quality Control and Quality Assurance. 28

PART 2. CURRENT QUALITY SYSTEMS AND
SOFTWARE STANDARDS

Chapter 4 The Traditional Approach to Software Quality
4.1 Quality Systems 33
4.2 Quality Organisation, Management and Review. . . 34
4.3 Design Documentation. 35
4.4 Configuration Management and Change Control. . . 39
4.5 Programming Standards. 41

4.5.1 General Rules. 41
4.5.2 Structured Programming. 42
4.5.3 Describing the Modules. 44

4.6 Design Reviews 46
4.7 Test and Integration 46
4.8 Subcontracted and Bought-in Software 47

4.8.1 Shelf versus Custom Software 47
4.8.2 Vendor Appraisal. 47
4.8.3 Field Experience and History. 48

4.9 Audit.. 48
Checklists ... 49

Chapter 5 Current Standards and Guidelines
5.1 The Need for Standards. 53
5.2 How Standards Evolve......................... 53
5.3 A Summary of Current Quality Systems. 54

5.3.1 UK Defence Standard 05-21. 54
5.3.2 British Standard 5750 (1987). 56
5.3.3 NATO Standards-AQAP Series 57
5.3.4 UK Defence Standard 00-16 57
5.3.5 UK Defence Standard 00-55 58
5.3.6 ISO 9001 (1987) 58

5.4 Current Software Standards and Guidelines. 59
5.4.1 HSE Document: Programmable Elec­

tronic Systems in Safety Related Applications
(UK) 59

5.4.2 lEE: Guidelines for the Documentation of
Software in Industrial Computer Systems
(UK) 61

5.4.3 EEA: Guide to the Quality Assurance of
Software (UK) . 63

5.4.4 EEA: Establishing a Quality Assurance
Function for Software (UK) 64

www.manaraa.com

Contents xi

5.4.5 EEA: Software Configuration Manage-
ment (UK) ... 64

5.4.6 EEA: A Guide to the Successful Start-Up of
a Software Project (UK) 65

5.4.7 Ministry of Defence MASCOT (UK) 65
5.4.8 Ministry of Defence JSP188: Requirements

for the Documentation of Software in Mili-
tary Operational Real-Time Computer Sys-
tems (UK) 66

5.4.9 IEEE: Software Engineering Standards
(USA)................................. 66

5.4.10 ElektronikCentralen: Standards and Regu­
lations for Software Approval and Certifica-
tion (Denmark) . 67

5.4.11 Guidelines for the Nordic Factory Inspector-
ates.................... 68

5.4.12 TUV handbook: Microcomputer in der
Sicherheitstechnik (Germany) 68

5.4.13 EWICS TO Documents. 69
5.4.14 CEC Collaborative Project. 69
5.4.15 US Department of Defense Standard 2167:

Defense System for Software Development. 70
5.4.16 IECCA: Guide to the Management of

Software-Based Systems for Defence, 3rd
Edition................................ 70

5.4.17 I Gas E: SR15, The Use of Programmable
Electronic Systems in Safety Related Appli-
cations in the Gas Industry 71

5.4.18 EEMUA: Safety Related Programmable
Electronic Systems. 71

5.4.19 STARTS: The STARTS Guide........... 71
5.4.20 Some Other Documents................. 72

5.5 Systems for the Future. 73
5.5.1 Paperless Design. 74

PART 3. SOFTWARE QUALITY ENGINEERING-AN
IDEAL APPROACH

Chapter 6 An Engineering Approach to Defining Requirements
6.1 Engineer versus Programmer. 77
6.2 A New Look at the Life-Cycle 78
6.3 Current State of the Art . 80
6.4 Formal versus Free Expression 80
6.5 Expressing Requirements-Specification Tech-

niques.... 81

www.manaraa.com

xii Contents

6.6 Available Specification Languages and Design
Methodologies 83
6.6.1 IORL (Input/Output Requirements Lan-

guage) 83
6.6.2 CORE (COntrolled Requirements Expres-

sion). 83
6.6.3 VDM (Vienna Development Methodology) 84
6.6.4 Z..................................... 85
6.6.5 OBJ................................... 86
6.6.6 SREM (Software Requirements Engineer-

ing Methodology) . 86
6.6.7 MASCOT (Modular Approach to Software

Construction, Operation and Test) 88
6.6.8 SSADM (Structured Systems Analysis and

Design Methodology). 88
6.6.9 JSD (Jackson System Development)....... 89
6.6.10 SADT (Structured Analysis and Design

Technique-Ross). 89
6.6.11 SSA (Structured System Analysis-De

Marco) 90
6.6.12 PSL/PSA (Problem Statement Language/

Analyser) 91
6.6.13 Petri-nets 91
6.6.14 Object Oriented Design. 91

6.7 Future Trends and Goals . 92

Chapter 7 Putting Design into an Engineering Context

Chapter 8

7.1 Verification and Validation 94
7.2 The Design Process . 94
7.3 Programming Standards 96

7.3.1 Module Specification Standard. 96
7.3.2 Module Definition (Documentation and

Code Package) Standard 97
7.3.3 Software Coding Standard................ 98

7.4 Design Review-Obtaining Visibility. 100
7.5 Reviews Inspections and Walkthroughs. 102

7.5.1 Reviews................................ 103
7.5.2 Inspections............................. 103
7.5.3 Walkthroughs........................... 104

7.6 Configuration Management. 105
7.7 Formal Verification. 105
Checklists ... 106

A Structured Approach to Static and Dynamic
Testing
8.1 Limitations of Test. 109
8.2 An Overview of Test Strategy. 110

www.manaraa.com

Contents xiii

8.2.1 Code Inspection and Walkthrough. 110
8.2.2 Symbolic Evaluation. 110
8.2.3 Static Analysis. 110
8.2.4 Dynamic Analysis. 111

8.3 Static Analysers 111
8.3.1 MALPAS and Example. 112
8.3.2 SPADE................................ 124
8.3.3 TESTBED (LDRA) . 124

8.4 Dynamic Testing 125
8.4.1 Test Levels. 125
8.4.2 Dynamic Test Tools. 127

8.5 Test Management. 128
Checklists 130
MALPAS Example................................. 131

Chapter 9 Languages and Their Importance
9.1 Programming Language-The Communication

Medium...................................... 143
9.2 The Requirements of Real Time Languages....... 146

9.2.1 Simplicity.............................. 146
9.2.2 Security................................ 146
9.2.3 Adaptability............................ 147
9.2.4 Readability............................. 147
9.2.5 Portability.............................. 147
9.2.6 Efficiency.............................. 147

9.3 Program Structures. 148
9.4 Concurrency.................................. 149
9.5 Design of Languages. 149
9.6 Future Languages. 151
9.7 Compiler Evaluation. 152
9.8 Current Languages. .. 153

9.8.1 Procedural (Ada, Pascal, Modula 2, C,
FORTRAN 77, CORAL 66, COBOL,
BASIC, Algol 60, APL, PL/1) 153

9.8.2 Declarative (PROLOG, LISP, Hope,
FORTH)............................... 156

9.8.3 Object Oriented Languages 157
9.8.4 Fourth Generation Languages. 157

Chapter 10 Aspects of Fault Tolerance in Software Design
10.1 Redundancy, Diverse Software and Common-

Cause Failure 159
10.2 Error Prevention 161

10.2.1 Electromagnetic Interference (emi) 162
10.2.2 Hardware Design and Architecture. 162

10.3 Error Identification and Correction 163

www.manaraa.com

xiv Contents

10.3.1 Error Detection. 163
10.3.2 Error Correction 164

10.4 Data Communications. 165
10.5 Graceful Degradation and Recovery 166
10.6 High Integrity Systems 166
Checklists ... 168

PART 4. NEW MANAGEMENT FOR SOFTWARE DESIGN

Chapter 11 Software Project Management
11.1 Use of Automated Tools 173
11.2 The New Approach to Software Quality......... 174
11.3 Setting Up an Audit 175

11.3.1 Objectives of the Audit.. 175
11.3.2 Planning the Audit. 176
11.3.3 Implementing the Audit. 177
11.3.4 The Audit Report. 178

11.4 Estimating................................... 178
11.4.1 Seeking Metrics. 178
11.4.2 Actual Methods. 179

11.5 New Software Quality Programmes............. 180
11.5.1 The Alvey Programme................. 180
11.5.2 STARTS............................. 181
11.5.3 ESPRIT Programme................... 182
11.5.4 EWICS TC7 . 182
11.5.5 CEC Collaborative Project 183
11.5.6 SEI.................................. 184
11.5.7 MCC Programme...................... 184
11.5.8 SPC................................. 184
11.5.9 STARS.............................. 184
11.5.10 JSEP. 185
11.5.11 SIGMA.............................. 185
11.5.12 SPP........ 185
11.5.13 RACE............................... 185

11.6 Software Security. 185
11.6.1 Security Against Data Theft. 185
11.6.2 Security Against Data Loss. 186
11.6.3 Viruses............................... 187

11.7 Software Safety and Liability. 188

Chapter 12 Quality-Can it be Measured?
12.1 By the System Designer. 190
12.2 By the Buyer. 191
12.3 By means of Metrics . 191
12.4 By Failure Distribution Modelling 194

www.manaraa.com

Contents xv

12.4.1 Jelinski Moranda . 194
12.4.2 Musa................................ 195
12.4.3 Littlewood and Verral 195
12.4.4 Shooman............................. 195
12.4.5 Schneidewind......................... 196
12.4.6 Brown and Lipow 196
12.4.7 Seeding and Tagging. 196

12.5 The Problem of Certification. 196
12.6 Failure Data Acquisition 197
12.7 Benefits and Drawbacks of Assessing Software . . . 198

12.7.1 Integrity Assessment.... 198
12.7.2 Benefits.............................. 198
12.7.3 Drawbacks........................... 198

Chapter 13 The Role of the Software Engineer
13.1 What is Needed. 200
13.2 Structured Training for a Structured Discipline. .. 202
13.3 The Importance of the Working Environment. . .. 203

PART 5. EXERCISE

Chapter 14 Software System Design Exercise--Addressable
Detection System

Checklist Application Chart. .. 255

Glossary of Terms.. 257
A Terms Connected with Failure .. 257
B Terms Connected with Software 259
C Terms Connected with Software Systems and their Hardware. 264
D Terms Connected with Procedures, Management and Documents.. 268
E Terms Connected with Test 270
F Common Abbreviations. .. 271

Bibliography. .. 273
1 British Standards ... 273
2 UK Defence Standards .. 273
3 US Standards. .. 274
4 Other Standards and Guidelines . 275
5 Books... 276

Index .. 277

www.manaraa.com

Acknowledgements

Particular thanks are due to two good friends and colleagues:

Mike Forrester, whose informed and thorough criticism led to
significant improvements in the text; and

Len Nohre, whose painstaking study of the manuscript revealed
many points for discussion and subsequent improvement.

Thanks are due to Stuart Pegler and Barry Price of British Gas
Midlands Research Station for helpful comments on Chapter 10.

Thanks also go to Ron Bell of the Health and Safety Executive for
reviewing Chapter 5 and for assistance with the section relating to
safety guidelines.

Bob Malcolm of CAP kindly allowed us to use his 'Get in boats'
illustration of structured programming in Chapter 4.

The second edition owes much to RTP Software Ltd, of Farnham,
Surrey for permission to make use of the MALP AS static analysis
example in Chapter 8.

Many thanks are also due to Dr Paul W. Banks and Mr John Dixon
for their major contributions to the case study which is Chapter 14.

Last, but by no means least, we must thank our wives, who have
had much to contend with.

xvii

www.manaraa.com

PART 1

The Background to Software Engineering
and Quality

The first three chapters define the terms which are necessary for an
understanding of the subject. Causes of failure are introduced as well
as the idea of the software design cycle. The basic software quality
problem is explained. Safety critical software is addressed.

www.manaraa.com

Chapter 1

The Meaning of Quality in Software

1.1 QUALITY-WHAT IS IT?

The popular view of quality is still a subjective concept which
perpetuates the idea that the more elaborate and complex products
somehow offer a higher level of quality than their humbler counter­
parts. Whilst this misconception is well understood amongst 'quality'
professionals the temptation remains to equate sophistication, instead
of simplicity of function, with quality.

Traditionally, quality is defined as the adherence to some agreed
specified performance. It follows that failures are observed as items
where the specification is not met.

A 'good' product requires not only conformance to the specification
but a 'good' specification in the first place. It is not unknown for a
good quality product to emerge despite an inadequate specification but
it must be said that this arises purely as a result of enlightened design
and is by no means a desirable state of affairs. On the other hand the
'good' specification is no guarantee of an adequate product since the
task of achieving conformance still remains.

This rigid concept therefore requires that the total performance
criteria are foreseen since failures cannot be said to occur in respect of
functions which have not been defined.

A problem arises in respect of our ability to foresee and define these
numerous and complex requirements, to say nothing of the complica­
tions arising from the combination of operating modes and environ­
ments. As systems become larger and more complex this difficulty
becomes more evident and often the result is prolonged negotiation
resulting in modifications to the requirements specification lasting
throughout the design and even into the test and commissioning
phases.

3

www.manaraa.com

4 Engineering Quality Software

USER

t ..
• ••

SPECIFIC ... T ION

...

" •
TEST OF USE

Fig. 1.1.

Figure 1.1 illustrates the simple concept of comparison with a
specification as a means of a demonstrating adherence to quality.
Figure 1.2, however, introduces the additional complication arising
from

(a) Our limited ability to foresee the requirement;
(b) Our actual perception of the performance.

The problem, which for that matter is not confined to software
engineering, is that the specification is a statement of what a potential
user perceives as the field requirements. Since the specification is
limited to one's perception of these requirements it is unlikely that it
will cover all needs and eventualities. This is compounded by the
further difficulty in interpreting the actual field performance since
incidents, or 'failures', are seldom observed when they occur but are
seen as 'second-hand' events.

or

A significant proportion of 'failures' are either:

Unwanted incidents which are not catered for in the specification
and are therefore formally not failures,

The result of various data values or program states which are no
longer available and therefore cannot be diagnosed.

The quality tasks facing the Software Engineer are therefore:

(1) Verify the requirement;
(2) Validate the design;
(3) Perform adequate tests.

www.manaraa.com

USER

..

The Meaning of Quality in Software

VERIFICATION & VALIDATION

•Itt.. REOUIREMrN~:--f ~~:'~I~ATION
.... I (Corre~tness)

• 1.. ___ -. ____1

• •
DESIGN

USE

" (---.----, " ..
I I

VAll DATION FUNCTIONS . •
(Consistency) I

I I L ___ • ____ ..J • • " .. .
Fig. 1.2. The quality problem.

1.2 QUALITY-THE ELUSIVE ELEMENT

5

Quality is an elusive feature of a product. The main reason, as we
have seen, stems from the inability to specify a requirement in its
entirety. The perception of quality in software is seen principally in
terms of the time that a software system operates 'correctly'.

At first sight software reliability might be easier to achieve than for
hardware since Fig. 1.3 reminds us that, in hardware, failures arise
from three basic causes which include the design itself:

(a) Early failures related to manufacturing imperfections, in other
words populations of inherent failures due to microscopic flaws;

(b) So-called random failures, assumed to be due to fluctuations in
stress;

(c) Wearout failures due to mechanisms of physical change.

Due to the abstract nature of software it can show neither of the last

www.manaraa.com

6

t
Failure
rale

Engineering Quality Software

Useful Life Wellroul

Ove,,11 curve

'.
:~:s~elaled (random) I

"'7 L
'.

'.

•· .• ~EllrIV I"
. f.ilur~·I --l __ <- Wea<oul

_ - - - ~"~ .. ~ - failures - I ,

Time ~

Fig. 1.3.

two characteristics since it has no physical entity. There remains, then,
only that inherent population of defects which arise from being unable
to foresee the total logic of a software package.

It is far easier to address the reliability of hardware designs when
the object is purely to eliminate undesirable interactions between
component parts. It does not require a genius to spot the stupidity of a
common pneumatic supply feeding two 'independent' braking systems.
Independence is not, however, so obvious in complex software
programs; thus the equivalent type of interacting software fault is
frequently found.

Furthermore, modifications are a fact of life in engineering and
many features are added to programs well after their original
conception. The indusion of code to bridge boundaries between
previously isolated program modules is thus a real possibility.

1.3 THE SOFTWARE PROCESS-CRAFT OR SCIENCE?

The piecemeal 'craft' approach to software design, otherwise known as
programming, has much in common with its historic counterpart.
Craftsmen, and more recently the electronic designers of the 1960s,
acquired their skills by a combination of imitation and practice. They
were unwilling to document their activities and preferred to work
alone. Although the skills and broad patterns of design were carried
from task to task, two designs were seldom if ever identical. In

www.manaraa.com

The Meaning of Quality in Software 7

software this tendency leads to poor design and error-prone code since
the benefits of evolving standard reliable packages are not readily
proliferated from design to design or from programmer to
programmer.

The last 25 years have seen a radical change in approach to
electronic hardware design. The vast size and complexity of these
electronic packages no longer permit the use of such undisciplined
methods. Recognised circuit functions are performed by proven
packages and components which have become readily accepted
standards used by electronic engineers.

It would be good to report that computer programming has also
undergone this transformation and that software is generated by
means of proven structures and standard routines. Alas, this is the
exception rather than the rule, although there are signs that we are
moving in the right direction and the remainder of this book will
describe the current practice as well as indicating future trends.

Much lip-service is paid to the need for formal methods and these
are currently receiving much attention in both the academic and
industrial worlds. They extend to the requirements specification level
already discussed and both logical and mathematical rules are being
applied to this activity. An engineering approach to the specification
and to programming is thus beginning to appear and will ultimately
allow products to be defined and developed with the same confidence
that applies to physical designs. However, the full realisation of this
ideal is still very much part of a vision of things to come.

This need for formalising structures is reflected in much current
teaching, and already some programming curricula and textbooks
advocate and explain these techniques. An embryo generation of
software engineers is thus at hand.

1.4 BLENDING ENGINEERING DISCIPLINE AND SOFTWARE
DESIGN

The tailoring of traditional quality disciplines to the software design
process has resulted in a 'checklist' approach to software quality.
Although this has led to significant benefits it by no means guarantees
error-free code and, furthermore, it has helped to perpetuate the
misconception that high software reliability can be achieved solely by
the application of these qualitative quality control techniques. In any

www.manaraa.com

8 Engineering Quality Software

case there is no accurate means of quantifying the potential improve­
ment in error rate which will result from such an approach.

Two fundamental changes to the approach are needed.
In the first case formal methods need to be seen as an integral

feature of an engineering design process to be applied by the system
designers themselves. Additional levels of surveillance will be of value
but the primary exponents of quality-related techniques must be the
designers. This requires a fundamental change in the training and
motivation of software staff.

Secondly, more formally based automatic tools are needed in
validating and verifying the correctness of specifications and of code if
realistic confidence levels are to be established during the production
of systems.

Requirements specification methodologies, static and dynamic test
tools and higher level structured languages will all contribute to this
improvement.

We may expect to see a radical change in software design manage­
ment. Key areas are:

Formal specification. The use of mathematical (probably autom­
ated) methods.

Design. Interfaces between modules will be better defined.
Libraries of re-usable software will exist. Proof of correctness of
specifications and verification of code will be largely automated or
achieved during the design process.

Test. Test specifications will be generated by and from the formal
languages. Test beds will be automated. Tests will be static and
dynamic (Chapter 8).

Modifications. Since requirements change with time then so does
the code. Formal methods supported by tools will make it easier
to determine which parts of the program need to be changed and it
becomes less likely that bugs will propagate.

1.5 THE CONFLICT BETWEEN QUALITY AND TIME

The cost of quality and reliability is no new concept. It recognises the
trade-off between the costs incurred by these techniques and the
penalty costs of failures. Experience suggests that the curve in Fig. 1.4
is biased towards the right and that failure costs far outweigh those of
prevention.

www.manaraa.com

The Meaning of Quality in Software

Availabilitv

Fig. 1.4.

9

Figure 1.5 reinforces this view by reminding us that the cost of
failure prevention is lower, and for that matter less uncertain, the
earlier that it is incurred. Pennies spent during the design phase
therefore reap better dividends than pounds wasted on diagnosis and
modification later on.

Activities, however, have to be planned and the temptation is to
save money by saving time during specification and design. The
temptation to begin coding too early is often a result of overwhelming

.. -" ~.2 '" o.!'; 100
~u
i ~ 50 - (;

:;; " 20
0'"
u g 10

~ g' 5

~~ 2~====~,~::::::~~~----~ ...J ..

~ ~ 1

PRELIM
DESIGN

DETAIL
DESIGN

CODE

Fig. 1.5.

/

INTEGRATE TEST USE

www.manaraa.com

10

ti
o
u

ti
o
U

Design

Design

Engineering Quality Software

Code

Traditional approach

Code

Formal approach

Fig. 1.6.

Test

Test I

schedule and commercial pressures. It is then too late to recover the
situation by adding additional manpower once the problems begin. In
fact, the addition of programmers, as a remedial measure, usually
results in delaying rather than improving the schedule.

The message is clear. Formal methods must be employed and the
appropriate resources committed at the beginning of the project. The
evidence is also clear.

This approach will result in more reliable software at a lower
schedule cost than by less disciplined approaches. Would that every
project manager agreed!!

Figure 1.6 compares the distribution of costs between the traditional
approach and the more formal methods. More expenditure on design
simplifies the coding process and substantially reduces the number of
errors to be revealed during test. The total cost and schedule is thus
reduced. The following chapters will outline the traditional methods
and explain the newer formal techniques and tools.

1.6 THE DECLINE OF HARDWARE AND THE RISE OF
SOFTWARE

The last two decades have witnessed a rapid transition from wholly
hard-wired electronic systems in which functions have been executed

www.manaraa.com

The Meaning of Quality in Software 11

as circuit features towards a single-circuit architecture which can
execute, via software, a vast range of hitherto specific circuit functions.
It is this 'multi-application' feature of the computer architecture which
has given rise to

(a) The increase of functions per unit of hardware.
(b) The favouring of software solutions as the preferred method of

system design.

The original goal which motivated and catalysed this trend was the
promise of flexible and lower-cost systems whereby hardware was
minimised and easily modified functions were achieved through
low-cost programs. The reality, however, is that these benefits have
been largely thrown away due to the poor economy arising from
unstructured and poorly managed software development.

The current scenario is therefore one of largely software­
implemented functions whereby costs remain too high due to
inefficient methods.

Only by the introduction and use of formal methods and automated
programming tools will these potential economies be realised through
the reduction of the currently excessive test and debug activities.
Unless these changes take place, there will be a tendency to revert to
hardwired solutions even though they may be less efficient. The
greater predictability of such solutions will be a positive attraction,
particularly in safety critical systems. The 'unpredictability' of software
is already leading to the introduction of 'hardware feedback', that is to
say diversity, in order to prevent software failures from leading to
hazardous situations. This is in no small measure a result of the poor
record of software development in recent years.

www.manaraa.com

Chapter 2

Software Failures-Causes and Hazards

2.1 ADVANTAGES AND DISADVANTAGES OF
PROGRAMMABLE SYSTEMS

A programmable system is any equipment or device which, having a
computer architecture (Le. arithmetic and logic capability plus a
memory), relies on a set of sequential programmed instructions in
order to function. This is known as a Von Neumann architecture. The
set of logical commands is referred to as software and usually consists
of binary numbers stored within the system. The term software also
embraces the design documents which are needed in order to produce
this code or program.

Some of the types of programmable system are typified by comput­
ing and real time control applications-both of these are software
systems-and can be seen in three broad categories:

(a) Mainframe computing. This can best be visualised in terms of
systems which provide a very large number of terminals (several
hundred) and support a variety of concurrent tasks. Typical functions
provided are interactive desktop terminals or bank terminals. Such
systems are also characterised by the available disc and tape storage
which often runs into hundreds of megabytes.

(b) Minicomputing. Here we are dealing with a system whose CPU
may well deal with the same word length (32 bits) as the mainframe.
The principal difference lies in the architecture of the main com­
ponents and, also, in the way in which it communicates with the
peripherals. A minicomputer can often be viewed as a system with a
well-defined hardware interface to the outside world enabling it to be
used for process monitoring and control.

12

www.manaraa.com

Software Failures--Causes and Hazards 13

(c) Microprocessing. The advent of the microcomputer is relatively
recent but it is now possible to have a 32-bit architecture machine as a
desktop computer. These systems are beginning to encroach on the
minicomputer area but are typically being used as 'personal compu­
ters' or as sophisticated work stations for programming, calculating,
providing access to mainframes, and so on.

The boundaries between the above categories have blurred con­
siderably in recent years to the extent that minicomputers now provide
the mainframe performance of a few years ago. Similarly microcom­
puters provide the facilities recently expected from minis.

The complexity of the architecture has increased in all three cases
and this has, to some extent, maintained a difference between them.
One example is the use of RISC (Reduced Instruction Set Compu­
ters). These are architectures in 32-bit microcomputers which have
provided a considerable performance enhancement. They involve
fewer instructions in the set but more efficient processing (see 10.6).
At the other end of the spectrum 'pipelining architectures' and
specialised 'bolt-on' systems, to enhance number crunching, use
parallel architectures and are becoming the norm. Pipelining involves
more sophisticated CPUs for which the FETCH instruction brings a
number of instructions into a buffer for speedier execution.

Real time applications have expanded more than any other technol­
ogy in recent years. These include:

Communications
Telephone signalling, mobile radio, telemetry, satellite.

Domestic
Appliance control and timing, security.

Transport
Auto landing, railway signalling, fuel management.

Energy
Process shut-down and control, fire detection, power stabilisation,
telemetry.

Health
Diagnostics, body monitoring, blood analysis.

Industry
Robotics, process data gathering, process control, automated
clerical and stock control methods.

Commerce
Word processing, calculations, elevators, graphics.

www.manaraa.com

14 Engineering Quality Software

Finance
Banking systems, dealing systems, cash dispensers.

From both reliability and operating standpoints there are advantages
and disadvantages arising from programmable devices.

Reliability advantages
Less hardware (fewer devices) per circuit due to high levels of
integration.
Fewer device types.
Consistent architecture (configuration) leading to a common
approach to hardware design.
Easier to support several models in the field with spares.
Simpler to modify or reconfigure.
Provides a running log for investigation.
Allows self-test.

Safety advantages
Removes human operators from hazardous areas.
Provides sophisticated process interlocks.
Interprets rates of change of process parameters and gives timely
warning of potentially hazardous conditions.
Provides early warning diagnostics.
Provides centralised displays and graphics on VDUs.

Reliability and safety disadvantages
Difficult to 'inspect' software for inherent faults.
Difficult to impose standard approaches to software design.
Difficult to control software changes.
Testing and validation of high-scale integration devices and their
associated software is difficult owing to the high package density
and consequent lack of visibility and interface to the functions.
Impossible to predict software failure modes and rates.
Exhaustive testing is impossible because of time constraints since
the number of permutations in software is extremely high.
More susceptible to common-mode failures.
Easier to corrupt data and programs.

Various features of software have a direct bearing on its quality. These
will be addressed throughout this book and include:

Usability and ease of diagnosis.
Traceability of requirements through the code.
Visibility of functions in the code.

www.manaraa.com

Software Failures-Causes and Hazards

Documentation clarity and consistency.
Spare capacity in timing and memory resources.
Fault tolerant design techniques.
Ability to operate in a degraded mode under fault conditions.

2.2 SOFTWARE-RELATED FAILURE~FAULT, ERROR,
FAILURE

15

The question arises as to how a software failure is defined. Unlike
hardware failures there is no physical change which causes a unit to

Random
Over - stress.

UNDETECTED

FAILURE

Wearout

Fig. 2.1.

Human

FAULT

Recovery
Software

SYSTEM

FAILURE

(Departure from
requirements)

Electrical
Interference

NO
FAILURE

www.manaraa.com

16 Engineering Quality Software

cease functioning. Software failures are in fact errors which, owing to
the complexity of programs, do not always become evident immedi­
ately. Unlike the hardware 'bathtub curve', there is no wearout
feature since the population of bugs can only (save for modifications)
decrease. Figure 2.1 illustrates the concept of fault/error/failure.

Faults may occur in both hardware and software. Software faults­
often known as bugs-will arise as a result of particular parts of the
code being used for the first time or because of corruption due to some
outside influence.

The presence of a fault in a program does not necessarily result in
either an error or failure. A long time may elapse before that portion
of the code is used under the circumstances which lead to failure.

A fault (bug) may lead to an error. This is the condition whereby
the system is in an incorrect state. A data value or an instruction is
thus incorrect and only when that particular part of the code is
executed is the error revealed.

An error may propagate to become a failure if the system does not
contain some error recovery logic capable of dealing with and
minimising the effect of the error.

A failure, be it hardware- or software-related, is the termination of
the ability of an item to perform its specified function.

2.3 CAUSES OF FAULTS

Faults are caused at all stages in the specification, design and coding
process. There is evidence that the majority of errors (over 60%) are
committed during the requirements and design phases. The remaining
40% occur during coding. That is not to say that coding is not a part of
the design but it is only the final activity in a much larger process. The
more complex the system the more faults will be likely to stem from
ambiguities and omissions in the specification stages. The major
sources of fault are:

(a) From the requirement specification
Incorrect requirements due to:

Model not a good fit to the physical situation.
Incorrect document cross-references.

Inconsistent or incompatible requirements:
Two references give conflicting information.
Conventions not consistent.

www.manaraa.com

Software Failures-Causes and Hazards 17

Requirement unclear or illogical.
Requirement omitted (e.g. handling of invalid inputs).

(b) From the design
Unstructured approach to the design breakdown (i.e. detail is
considered first).
Lack of proper reviews.
Lack of change control.
Specification was misunderstood.

(c) From coding
Semantic errors involving incorrect use of statements.

SOURCES OF FAILURE

DESIGN

Ambiguity
Omission

HARDWARE

Wearout
Manufacturing
Random Oller-stress

SOFTWARE

Requirements
Design documents
Code

Electromagnetic corruption

DEFENCES

RELIABILITY
TECHNIQUES

Configuration
)------l

Test {
Screening

/"" Replacement

/ r Design stress

QUALITY TECHNIQUES

Software documentation

Software development tools

Fig. 2.2.

www.manaraa.com

18 Engineering Quality Software

Logical errors in translating the design into code.
Detailed syntax errors which may have escaped detection by the
compiler.
Poor data validation (e.g. no default condition after a data input).
Variables not initialised, or used incorrectly.
Insufficient arithmetical accuracy.
Insufficient range checks (e.g. divide by zero).
Type mismatch (e.g. string used as a variable).
Residual errors in compilers.

Figure 2.2 gives an overall picture summarising the sources of
hardware and software failures and the defences against them.

2.4 SAFETY CRITICAL SOFTWARE

Applications of programmable equipment now include equipment
carrying out safety functions. Examples are fire and gas detection
apparatus, shut-down and control systems in process plant, medical
electronics, aircraft controls, machine tool control, nuclear plant and
weapon systems. The consequences of failure under these cir­
cumstances are often severe and thus attract particular attention.

Using software in potentially hazardous situations leads to two main
difficulties:

(a) Due to the complexity of software failure modes the possibility
of hazardous failures is greater.

(b) Since the use of software makes failures difficult to predict it is
difficult to perceive if the integrity of a system is adequate.

There are four basic design philosophies which should be considered
when incorporating software elements into a safety system.

(1) The software directly controls the safety-related function. Figure
2.3(a) shows a contact providing an input to a programmable
electronic system (PES) which, in turn, provides an output. The PES
output operates a solenoid whose contact causes some safety action. It
is possible to imagine the PES causing an unwanted operation or even
failing to operate when required. Due to the uncertainty associated
with software failures this solution is seldom favoured.

(2) The system retains hardwired control. Figure 2.3(b) also shows
this arrangement whereby the PES carries out functions whilst the

www.manaraa.com

Software Failures-Causes and Hazards

(al

(bl

(e) ~ - PES

(dl

+

R

Monitor

~

~-~...JUj~-H PROCESS ~
1
1

1----1 I

--I PES :_J
L __ ...J

Fig. 2.3.

19

www.manaraa.com

20 Engineering Quality Software

solenoid is still operated from the input. Currently this solution is
usually favoured.

(3) Figure 2.3(c) shows an alternative application of the override
principle. In this case a hardwired monitor examines the outputs and
disconnects the PES from the solenoid in the event of predetermined
undesirable combinations of output.

(4) Diverse software is employed whereby duplicated or triplicated
systems are provided such that each system is separately designed and
programmed. Some measure of protection against software failure is
thus obtained and the outputs from the diverse systems can be
compared and voted. This is shown in Fig. 2.3(d).

These alternatives and their relative merits are discussed in Sections
5.4.1 and 10.1.

Various guidelines-particularly the HSE and CEC documents
described in Chapter ~all for assessments to be carried out on
safety-related programmable systems. The assessments are required to
address:

(a) The overall design configuration (Section 10.1).
(b) Hardware reliability for the hazardous modes (see Reliability

and Maintainability in Perspective, 3rd edn, David J. Smith,
Macmillan, London, 1987).

(c) Qualitative features of the system and its software (see
checklists) .

In any assessment it is important to identify and then define the
boundary of what constitutes the 'safety-related system'. This enables
the failure modes of interest to be defined. A clear statement of the
safety requirements is also necessary so that definition of hazardous
failure can be unambiguous. Some guidelines and standards are then
needed in order to give criteria for judgement. The documents
mentioned above provide such guidance.

A new initiative which is still under way at the time of writing, is the
production of a new Def-Stan by the Ministry of Defence. The
purpose of this new standard is to lay down requirements for the
production of software for safety-critical systems produced for military
use. The main theme of Def-Stan 00-55 is that formal methods are to
be used, in particular, the use of mathematical methods to formally
verify programs against their specifications. It is expected that this new
standard will come into use in late 1989.

www.manaraa.com

Software Failures-Causes and Hazards 21

2.5 QUANTIFYING SOFTWARE RELIABILITY

In Section 1.2 it was stated that software failures arise from a
population of design faults. This population will decline as failures
arise and each cause is removed by means of a modification. The rate
of occurrence of these failures is dependent on the use of different
paths in the program, in order to reveal the faults, rather than the
passage of time.

Numerous attempts have been made to model the distribution of
software failures. The statistical prediction of failures based on the
extrapolation of test data is difficult since time-related models do not
necessarily hold good for future periods of code execution. Further­
more, the data contained in the observed distribution may not contain
the information relevant to the tail of the distribution which is where
predictions are required. The assumptions made by the various models
tend to be difficult to achieve in practice. For example, it is often
assumed that manpower levels are constant, whereas in practice they
vary throughout the project. This will be addressed in Section 12.4.

Another approach to modelling software reliability involves an
attempt to identify measurable complexity and size parameters (known
as metrics) which can be correlated with failure rates. The problem in
this case is that the number of complex interacting variables which
govern software quality is probably greater than can be realistically
modelled. Unlike hardware there is no simple repeatable model
involving the failure rate of specific elements. These techniques are
discussed in Section 12.3.

No amount of statistical failure analysis will directly contribute to
quality in the specification and design of software and it is the
purpose of this book to address the qualitative techniques which will
influence software quality. The techniques described in the following
chapters, therefore, concentrate on the prevention, detection and
removal of errors.

www.manaraa.com

Chapter 3

The Effect of the Software Life-cycle on
Quality

3.1 THE MEANING OF 'LIFE-CYCLE'

The idea of a life-cycle is a convenient model which serves two
purposes. Firstly, it allows one to represent the process of conception
and production in a graphical and logical form and, secondly, it
provides a framework around which quality assurance activities can be
built in a purposeful and disciplined manner.

The conception, design and use of software is an evolutionary
process. That is to say, it is produced through successive stages of
specification, design and modification. Each assessment of a piece of
software, be it by a review of the requirements, the design, the code
or, later, by tests and field use, results in changes. This process should
involve successive tiers of specification and design where each step is
verified against the requirements of the preceding stage. Thus a form
of reliability growth applies and a viable software product is evolved.

This top-down succession of activities is commonly called a software
life-cycle, and is described in diagrammatic form in Fig. 3.1. This
commonly used model of software development is often called the
'waterfall model' because of its similarity to a set of cascading
waterfalls. It depicts the software life-cycle as a set of linked but
discrete processes with inputs downwards to successive stages and
feedbacks upwards to provide verification against previous stages and
a final validation of the requirements.

The first stage in this model is the definition of requirements.
Always the first stage in any problem-oriented process, it is in fact the
most difficult to achieve. The problem lies in the communication
between customer and developer. The former often does not know
what he wants and, as a result, the latter will have difficulty in

22

www.manaraa.com

The Effect of the Software Life-cycle on Quality 23

'--------......--Modifications --------~~~~:=.I

Fig. 3.1. One software life-cycle diagram.

formalising a specification which accurately translates the requirements
into design. Even in cases where the customer has a precise idea of
what he wants the development of the system tends to result in a
modification of the customer's original perception of the final need.
This leads to conflict between customer and developer. This require­
ments stage can be compared with the preparation of a legal

www.manaraa.com

24 Engineering Quality Software

document. The more precise it becomes the more difficult it is to
understand. If precision is omitted, then the scope for ambiguity and
misunderstanding increases.

Assuming for the moment a satisfactory set of requirements, the
next stage, which takes us into design, is usually for the developer to
respond with some form of functional specification. This defines, at the
interface between user and system, the externally apparent functions
of the system as the developer perceives them. This equally important
stage defines what the developer is to implement and thus provides the
first level of visibility to the customer of the eventual product. It is
vitally important that the correspondence between functions and
requirements be ascertained to ensure that it is possible to trace
requirements throughout the remainder of the life-cycle.

From here onwards one becomes involved in design iteration of
some form. At the highest level a system design is established which
will allow the separation of software components from non-software
components and the definition of the interface between them. Very
often an architectural design will be generated in order to establish a
framework. Software design is then performed by use of an established
'top-down' methodology. It is here that the greatest effect on quality
can be seen since the quality of the design will greatly determine the
final quality of the product. The lowest level of the software design
will provide the basis for coding and will largely define the structure of
the program. In this way the design should solve the overall problem
leaving only minor difficulties for the programmer. In the event that
some design features are not implementable, then it may be necessary
to resort to redesign and iteration until the problem is solved.

The next stage involves testing the coded design at various levels. At
the lowest level the programmer must debug his code in isolation and
then present it for integration to the system of which it is part. Prior to
integration it will go through some form of verification. As integration
progresses and external functions begin to appear the customer is
often provided with the opportunity to view the potential product.
This can prove invaluable in demonstrating both that the system is
being developed as originally specified and also to detect points of
misunderstanding in interpreting the original requirement.

Finally an acceptance of the system will take place, at which stage
the customer may 'sign-off' the system, possibly with some defects still
acknowledged. In-service use should also be viewed as part of the
system life-cycle right up to the point of obsolescence.

www.manaraa.com

The Effect of the Software Life-cycle on Quality 25

Acceptance testing usually concentrates on demonstrating the func­
tional aspects of the product. In reality it is delivery and operation
which usually reveal the degree to which the product meets the
customer requirements.

Finally there is an ongoing maintenance activity whereby faulty or
missing requirements are revealed and addressed. Unfortunately, at
this stage the cost of rectification is very large.

This life-cycle model is not the only one available. It has, however,
the advantage of being the most common and is well understood. The
opportunities for feedback within it are many and thus, provided that
the system developer wishes, the propagation of faults can be largely
prevented by the detection and verification activities at each stage.

It is important, in the software life-cycle, to distinguish between the
two words

specification
and

design

The specification (the top part of Fig. 3.1) is a description of
requirements and is usually written by the user. It is vital that such a
requirements specification is an accurate statement of what is needed
(see Chapters 4, 5 and 6). An incorrect or ambiguous statement, at
this stage, will simply be reflected into the design and may not become
evident until it is revealed, during test, that the product is not what
was required.

Designing is the process of breaking down that specification into a
logical hierarchy of successive descriptions resulting eventually in
program code. The middle part of Fig. 3.1 deals with this activity. The
design itself is the set of documents and code listings which are
produced.

3.2 ACHIEVING QUALITY SOFTWARE

There are a number of activities and methodologies which contribute
to software quality. It is important to understand that these fall into
two categories:

(a) Quality activities which attempt to identify and remove errors.
These disciplines also minimise the probability of errors being
committed.

www.manaraa.com

26 Engineering Quality Software

(b) Specification and programming methods and their associated
automatic tools which make it highly unlikely that certain types
of software error will be committed by removing many of the
traditional steps in software design.

The former group, commonly referred to as software quality,
consists of activities which will be described in detail in Chapter 4,
including the following areas. Current standards and guidelines to
their application are described in Chapter 5.

Configuration management. This is the essential quality activity of
keeping cpntrol of the issue and status of all hardware, documents,
firmware and software. Control of changes is additionally important
since there is no visibility to the software on discs and PROMs other
than via labelling and documentation.

Documentation standards. Since the only visibility to software is via
documentation, a formal structure of specifications, design documents
(e.g. diagrams) and code listings is essential. Naturally these should be
appropriate to the size of the software package. A few pages of
requirements and flowcharts may well suffice for a small calculation
package, whereas several volumes would be necessary to describe a
large real time control project for some process control or com­
munications system.

Programming and design standards. The objective is to write clear
structured software using well-defined modules whose functions are
easily understood. There is no prize for complexity and there are
various methods for developing structure, including flow, hierarchical
and structured diagrams as well as pseudo code (a form of high level
code using English language statements).

Design reviews. These are assessments of the design against the
requirements. Since the early design reviews are carried out before the
product is ready for demonstration or test they take the form of an
assessment of the functions provided by the design specifications and
flow charts. Code inspection and walkthrough (discussed in Chapter 7)
are a part of later reviews and involve detailed examination of the
code in order to assess its capability of carrying out the requirements
and its conformance to standards.

Test and integration. Testing involves a number of methods. These
are described in detail in Chapter 8. It is important to plan a
structured set of tests which build on each other so that confidence in
modules leads to testing of subsystems (groups of modules) until the

www.manaraa.com

The Effect of the Software Life-cycle on Quality 27

entire system is integrated and ready for functional and environmental
test. Types of test include:

Formal proof of correctness.
Validation of code by inspection or walkthrough.
Static tests.
Dynamic tests involving test data.

Failure feedback. Repetition of a proven piece of code with the
same inputs will only continue to generate the previous result. Hence,
software faults will only be revealed by exercising the program in
different ways. This arises in field use, as a result of which reliability
growth will be observed following the modifications which arise from
field failures. The more structured and formal the system of failure
feedback, the faster will be the reliability growth. There are three
distinct areas of failure data collection:

(1) Informal reporting prior to an item becoming subject to
configuration control.

(2) Failure reporting during test.
(3) Field failure reporting from the user.

The above traditional quality activities involve setting standards and
auditing progress against the stated requirements. Although this
provides an environment for reducing the likelihood of errors, it does
not impact on the fundamental reasons for their existence.

The second group of activities (formal and automated methods) are
far more effective since they seek to replace error-prone activities with
formal and automated tools. The primary objective of this book is to
establish the benefits to be derived from these tools and to describe
reasons for their development. Parts 2 and 3 will outline the current
methods and practices and will explain the evolving methodologies,
tools and attitudes which need to dominate software design if its
reliability is to equal or exceed the associated hardware.

3.3 CURRENT PRACTICE

A large number of designers ignore both of the above approaches. It is
tempting to proceed with coding when only a part of the total design is
conceived. Indeed, commercial pressures make this almost inevitable.

www.manaraa.com

28 Engineering Quality Software

Many designers pay lip-service to the techniques of quality and go so
far as to install quality manuals and procedures. Frequent audits
against these standards and procedures give the impression of achieved
quality. However, these methods alone do not prevent the individual
from producing the uncoordinated code which typifies the problem of
software design.

A few design teams succeed in applying the traditional quality
techniques, mentioned above, in a realistic and conscientious way. The
result is much higher-quality software than would otherwise have been
the case and, more important, the bugs are discovered and rectified at
the earliest opportunity. As shown in Fig. 1.5 of Chapter 1 this
minimises the time and cost associated with reliability growth.

A very small number of organisations have yet invested in the
design and programming tools which essentially replace and supersede
the quality techniques by preventing rather than removing software
faults. These tools vary from simple aids which concentrate on one
aspect of software development right through to full 'environments' of
tools which provide facilities for design capture and expression, code
production, context- and syntax-sensitive editors, test aids and con­
figuration management. These so-called Integrated Program Support
Environments (IPSEs) are just beginning to see the light and are likely
to have a strong impact on software development in large systems.

The next chapter gives a comprehensive outline of current software
quality techniques. Although they do not guarantee the absence of
errors, if properly applied they will greatly improve the quality of the
software product. Chapter 6 onwards is devoted to the techniques
which will further improve the situation.

3.4 QUALITY CONTROL AND QUALITY ASSURANCE

Much is written concerning the meaning of quality, quality control and
quality assurance. It is not the purpose of this book to address the
differences in any detail but, nevertheless, a few words are called for.

The term quality refers to the whole concept of specifying, designing
and implementing software and hardware which meets the require­
ments of the user. It involves all stages in the 'life-cycle' and thus
addresses the various methods and tools which can be used to achieve
it.

www.manaraa.com

The Effect of the Software Life-cycle on Quality 29

Quality control is the activity of measuring achievements and
performance against some preceding specification or standard.

Quality assurance embraces the activities which check that the
quality control process is taking place and that the standards, methods
and tools are adequate.

The organisational split between these activities varies between
companies and there is no 'correct' way of apportioning tasks and
responsibilities.

What matters is that the tasks are carried out.

www.manaraa.com

PART 2

Current Quality Systems and Software
Standards

The next two chapters describe the current quality methods and
provide a review of the published Standards and Codes of Practice.

www.manaraa.com

Chapter 4

The Traditional Approach to Software
Quality

4.1 QUALITY SYSTEMS

There is nothing particularly new in the idea of software quality. It has
evolved from inspection methods and procedures into systems of
control and is characterised by the requirement for conformance to
formal procedures. It is, however, rooted in the manufacturing
activities which have dominated hardware production for several
decades. Hardware quality is achieved by bringing together conform­
ing parts and materials by means of proven processes.

The design of software, on the other hand, has no equivalent model.
Simple conformance of individual program modules to some specifica­
tion is certainly no guarantee of system quality and, in any case, it is
rarely possible to test for total conformance until all the system
modules are brought together as a whole. In other words, although it
is possible to validate each module of code without reference to the
system, the inter-relationship of coded modules is far more subtle than
is the case with hardware pieceparts.

Currently quality systems concentrate on establishing the existence
of standards and controls and seek, by means of audit, to verify that
they are applied. They operate by specifying various areas for control
and requiring that suitable audits take place to verify that they are
being applied.

The role of quality management, in these systems, is to monitor
conformance with procedures and standards by means of:

Establishing quality plans.
Quality management reporting.
Review meetings.
Quality audits.

33

www.manaraa.com

34 Engineering Quality Software

In some cases the software quality function is set up as a separate
activity from the existing hardware quality. Due to the slightly
different skills involved, or perhaps to the craft approach which still
pervades the production of software, the activity often evolves as a
separate responsibility. This can lead to a blinkered approach to the
resolution of problems due to the polarisation of failures into
'hardware problems' and 'software problems' when, more often than
not, a solution can be found in a compromise involving both. The
principles of quality are common to both and there should be a focal
responsibility for this function within any organisation.

The remainder of this chapter describes the areas and extent of
current software quality methods.

4.2 QUAUTY ORGANISATION, MANAGEMENT AND REVIEW

There has to be an identifiable organisational responsibility for
software quality. The important thing is that the actual function can be
identified-actual titles are not very important. In a small organisation
individuals often carry out a number of different tasks and the quality
activities may well be adequately carried out by someone who
combines them with other duties.

There should be a quality manual for the organisation and a quality
plan together with specific documents for each project. Whereas the
quality manual describes the tools and procedures available, the
quality plan consists of specific methods drawn from the manual, for
that project. These should be produced by the design team but
controlled independently of the design activity. They may not have
these fancy titles but what is important is the intent. Quality plans
must be used effectively and not just left on the shelf.

Specialist quality staff are essential to ensure that customer require­
ments are adequately planned at the pre-contract stage. During the
project the quality engineer will review progress with the project
manager and others.

The quality plan must embrace:

How, when and by whom reviews are to be carried out.
What standards, procedures and codes of practice will be applied.
The extent of quality control of subcontractors.
Methods of failure reporting.

www.manaraa.com

The Traditional Approach to Software Quality 35

Test strategy and the control of testing.
Extent of customer involvement in project quality.

Another feature of quality management is the ongoing review of the
quality system. Systems should evolve to meet the requirements of an
organisation and the types of product which it develops. It is therefore
essential that systematic reviews be held to establish:

Adherence to current procedures.
Effectiveness of current procedures.
Need for additions/changes to the procedures.

4.3 DESIGN DOCUMENTATION

This will vary, according to the size and complexity of the product,
from a complex hierarchy of specifications, as illustrated in Fig. 4.1, to
a few pages consisting of:

A functional description.
Design text and diagrams.
A program listing (lines of source code).

In more complex systems the structured hierarchy (Fig. 4.1) is
essential. It represents a top-down approach whereby the requirement
is decomposed from the user requirements specification through the
various levels of design specification to the source code listings.

It is now widely accepted that the so-called 'top-down' approach
provides the best result. Briefly the approach takes the whole system
and decomposes it functionally into major subsystems. Each subsystem
can then be decomposed in a similar manner until there are codable
modules. The major advantage of the 'top-down' approach is that it
treats the system as a whole and not as piecemeal components as in
'bottom-up' design (see Section 4.7).

It is the authors' experience that lack of a visible documentation
structure, reflecting the system in the manner described above, nearly
always coincides with design problems and delays and vastly higher
failure rates during test and commissioning.

The documents should include:

User requirements specification. This describes the functions to be
performed by the system. It should be complete and unambiguous and

www.manaraa.com

36 Engineering Quality Software

DOCUMENTS STAGES

-
USER
REQUIREMENT I SPECIFICATION r-

UTILITY
SPECIFICATION

REQUIREMENTS

FUNCTIONAL SPECIFICATION
1------ SPECIFICATION -
I

I -
HARDWARE SOFTWARE DATA
DESIGN DESIGN '-- REQUIREMENTS
SPECIFICATION SPECIFICATION SPECIFICATION

1
-I

1
1

etc.

I I
SUBSYSTEM - SPECIFICATIONS

DESIGN

I I
MODULE ~
SPECIFICATIONS

MODULE
DEFINITIONS

I~EVELOPMENT }t.
NOTEBOOKS ~ -

FLOWCHARTS] AND
LISTINGS

CODING

MEDIA

TEST PLANS I
TEST SPECIFICATIONS
TEST PROCEDURES

~TEST AND

~ NTEGRATIO'

Fig. 4.1.

www.manaraa.com

The Traditional Approach to Software Quality 37

should be quantitative wherever possible in order to facilitate the
assessment of whether the requirements have been met.

Since the user requirements specification is a formal contractual
document it is important that its preparation is a thorough and
painstaking process involving all interested parties. A good structure is
described in the lEE document (see Section 5.4.2) and includes:

(a) An overview providing a perspective of the system within the
plant or total environment in which it is to be employed. It
should indicate the overall objectives of the system.

(b) System objectives setting out in full detail the objectives as they
relate to the operating requirements.

(c) System interfaces outlining how it is required to communicate
with the world. This includes both human and electrical/data
interfaces.

(d) System environment which covers all the features which would
affect the hardware and software design.

(e) System attributes describing and listing the parameters which
constrain the design.

(f) Test considerations including diagnostic requirements which will
affect operation and maintenance.

(g) A commercial section addressing licensing, etc.

Ideally the user requirements specification should be a pre-contractual
document since it specifies what the contract will provide. In practice,
however, it may well be subject to negotiation and change after the
contract has been established, in which case both parties must
carefully evaluate the performance, cost and schedule implications.

Functional specification. It takes the requirements of the user
specification and describes the actual processing functions which are to
be carried out in order to achieve those requirements. It will address
language, memory requirements, data bases, the partitioning of the
system into subsystems, inputs, outputs, interface communications,
data flow, etc.

The important difference between the functional specification and
the user requirements specification is that whereas the latter states
what is required, the former describes how it will be achieved in terms
of functions. It is usually prepared by the supplier in response to the
user requirements specification and, once agreed, becomes a part of
the contractual documentation against which acceptance will ulti­
mately be reviewed.

www.manaraa.com

38 Engineering Quality Software

During the detailed process of generating the functional specifica­
tion, deficiencies and ambiguities in the user requirements specifica­
tion will arise. These must be negotiated and documented as men­
tioned above.

Software design specification. Once the software and hardware
functionality has been separated, one can proceed to consider the
software aspects separately. This proceeds in a top-down manner until
subsystem or module specifications are derived, according to size and
complexity. Whereas the functional specification addresses the exter­
nally apparent functions of the system, the software design specifica­
tion addresses the way in which those functions will be implemented in
software.

Subsystem specifications. If the system is small enough it may be
possible to do without subsystem specifications and to move directly to
module specifications. In large systems, however, subsystems will
ultimately consist of modules and the subsystem specification will
describe the functions of the subsystem, the data flow between
modules and the interfaces to the other subsystems.

A typical subsystem specification would commence with a brief
(one-paragraph) description of the subsystem function. For example:

'The Graphics subsystem receives inputs of the status of fire and gas
detection devices. It processes this data to construct mimics of zones
and their fire and gas alarm status. This information is passed to the
VDU subsystem.'

The specification will carry on to describe how the subsystem is
decomposed into modules and what procedures they carry out.
Interfaces to other subsystems may be described by means of data flow
diagrams.

There will also be a breakdown of the subsystem into modules (basic
coded units) together with a brief description of each module. A
statement concerning the operating system, memory requirements and
hardware environment would also be included.

Module specifications. This is the 'foundation' of the hierarchy since
it contains the basis of the system code. A module of code should not
be greater than can be easily perceived by a single person understand­
ing its total function-typically tOO lines. G. J. Myers wrote 'Write a
sentence describing the purpose of the module. If the sentence is a
compound sentence, containing a comma or more than one verb, then
the module is probably more than one function.' The module

www.manaraa.com

The Traditional Approach to Software Quality 39

specification will describe the inputs and outputs of the module and
the logic to be performed by it. The flowchart will be part of the
specification.

Module definitions. This is a more detailed level of design than the
module specification. It involves the actual coding of the module
specification requirements and addresses the testing and performance
of that module. It includes:

The module specification.
Diagrams (see Section 4.5).
Source code listing.
Test specification.
Test procedure.
Test results.

This package then constitutes a total description of the module and its
design and test history.

Utility requirements specification. This should contain a description
of the hardware requirements including the operator interface, hard­
ware memory requirements, processor hardware, data communica­
tions hardware, software support packages, etc.

Development notebooks. It is an excellent thing for each designer to
have a development notebook-a looseleaf file containing his written
notes, listings, changes, correspondence, etc. This can be an invalu­
able aid to diagnosis during testing when the reasons for certain lines
of code or some changes, have become blurred in one's memory.
Furthermore, with the turnover of design staff it is possible that the
person in question may not be available when problems arise.

Requirements matrices. These provide a graphical system of cross­
referencing between specifications as well as a method of checking off
each requirement against the test specifications.

4.4 CONFIGURATION MANAGEMENT AND CHANGE
CONTROL

This requires procedures covering:

Modifying the software.
Modifying the hardware.
Reporting discrepancies.
Disposal of documents and media.

www.manaraa.com

40 Engineering Quality Software

Keeping secure masters.
Modification approval.
Labelling documents and media.
Segregating non-conforming items.

It is vital to ensure that changes are formally documented and
controlled, particularly since there is no visible change to the software
media (tapes, discs, PROMs). Any hardware change can render the

D~A

~ OOClMNTATION

Fig. 4.2.

www.manaraa.com

The Traditional Approach to Software Quality 41

software incompatible, therefore the build state of the two must be
carefully controlled. A PROM containing the incorrect issue of
software, even though only a single statement may have been changed,
can cause a system to malfunction. This may well be a hazard in a
process control or safety system.

Figure 4.2 shows a typical outline of a change system which
co-ordinates both documentation and media.

The library/bureau function may well provide a focal point for this
configuration and change control. Other library functions are:

Storage and identification of media and documents.
Build state records.
Spare copies and security.
Audit reports.
Codes of Practice.
Test documents.

A good rule is that a document first becomes subject to
configuration control once it is used by another person. The library
will then take control by checking completeness and format and will
provide a unique identity and issue status.

Media should have visible labelling containing serial and issue status
and this information should also be present in the software itself-that
is to say, written on to the disc, encoded on the tape leader,
programmed into specific locations of the PROM.

Arrangements for secure storage are important and 'insurance
copies should be made weekly (or even daily) for storage in a different
location. Banks provide this function and many organisations make
use of the facility.

4.5 PROGRAMMING STANDARDS

4.5.1 General Rules
The human brain is not well adapted to retaining random information;
hence standardised rules and concepts substantially reduce the prob­
ability of error.

A standard approach to creating files, polling output devices,
handling interrupt routines, etc., constrains the programmer to use
proven methods.

www.manaraa.com

42 Engineering Quality Software

A further step in that direction is the use of standard subroutines to
perform common functions within the system. Re-inventing the wheel
is both a waste of time and an unnecessary source of error. Examples
are:

Extended memory addressing (EMA) buffer management.
EMA table access.
System error routines.
Commonly used data structures.

The undisciplined use of GOTO statements in high level language is
dangerous and leads to difficulties in perceivability of the functions
when reading source code. This is known as spaghetti code. Modern
block structured languages often contain no GOTO statement.

Modules should have only one entry point and it is desirable that
they have only one clearly defined exit.

To avoid data corruption the use of globals should be minimised so
that modules can only access data local to their subsystem. Where
global data (e.g. EMA buffers, system data) is required then standard
subroutines must be used for access.

A good guide to module size was given in Section 4.3 (G. J. Myers'
quotation). In practice this might be 30-60 lines of code plus 20 lines
of comment, but the ultimate criterion is its total perceivability in
order to grasp the function.

4.5.2 Structured Programming
This involves the decomposing of the design (as discussed above) in a
strictly logical manner. If the design has been well structured, then the
coding activity should be almost routine after reading the module
specification. The following light-hearted example, in a sort of pseudo
code, illustrates the difference between a structured and unstructured
approach.

Unstructured
(Embark)
Begin

Get in boat
Reach for bag!>
If bags in reach then GOTO 'out'
Again: Shout for help

Structured
(Embark)
Begin

Get in boat
Reach for bags
IF in reach THEN
put bags in

www.manaraa.com

The Traditional Approach to Software Quality 43

END

IF help comes THEN
Begin

Take bags

GOTO 'out'
END
GOTO 'Again'
'Out': put bags in boat
Sailaway END

ELSE
Begin

While no one around do
shout for help

Take bags
put bags in boat

END
Sailaway

Looking at the two examples it can readily be seen that the same
problem has been tackled in two ways. In the unstructured case it is
necessary mentally to add lines and arrows to perceive the loops. In
the structured case the flow is always forwards. Note that, in the
structured case, no GOTO statement is present.

4.5.3 Describing the Modules
Earlier in this chapter it has already been emphasised that the
requirement is to arrive at well-defined modules via a process of
logical definition. There is no prize for complexity.

There are several methods of developing the module on paper:

Flow diagrams are a method of graphical representation as illus­
trated in Fig. 4.3. They are less popular now as a result of more formal
block structured languages. There is a potential fault inherent in Fig.
4.3. Consider what happens if N < O. Is there an endless loop?

Hierarchical diagrams provide a breakdown by task and then detail
as illustrated in Fig. 4.4.

Warnier Jiagrams use both horizontal and vertical dimensions, and
Fig. 4.5 shows the same problem as Fig. 4.4 in Warnier form.

Structured box diagrams, sometimes known as Nassi-Shneiderman
diagrams, are another format and the same task is shown again in Fig.
4.6.

Pseudo code uses English language statements as illustrated in the
'Embark' example above.

These aspects of programming are developed further in Section 7.3,
which addresses the more up-to-date methods.

www.manaraa.com

44 Engineering Quality Software

1. Put I = 0

2. Put p=o

Yes

4. Put P=P.A

5. PutI=I.1

No
>----I~-I 7. Put M = P

Fig. 4.3.

www.manaraa.com

I
OPEN
FILE

I
STATE =

TRUE

I
PRINT
ALARM

The Traditional Approach to Software Quality

READ ALL RECS
UNTIL EOF

I

Fig. 4.4. Hierarchical diagram.

I
STATE -
FALSE

I
SKIP

(

OPEN FILE

READ RECORD

FILESCAN UN~IL RECORD {IF STATE = TRUE PRINT ALARM
- EOF do READ NEXT RECORD

CLOSE FILE

Fig. 4.5. Warnier diagram.

OPEN FILE

DO FOR EACH RECORD

~/-THEN ELSE

PRINT SKIP

ALARM

CLOSE FILE

Fig. 4.6. Structured box diagram.

45

I
CLOSE
FILE

www.manaraa.com

46 Engineering Quality Software

4.6 DESIGN REVIEWS

Two common misconceptions about design review are:

That they are schedule progress meetings.
That they enable one to appraise the designer.

These are both dangerous misunderstandings of the purpose of design
review and will result in its not being effective. Its purpose is to verify
the design, at specific milestones, against the requirements-not to
establish reasons for delay. Chapter 7 deals with the function and
conduct of design reviews in some detail.

The value of design review is usually underestimated but it is most
definitely the major activity in establishing software quality. Being a
formal review highlights the need for a baseline against which to
review specifications. Section 7.4 addresses this further.

Design reviews can involve code inspection and walkthrough, both
of which involve the systematic review of code against its specification.
This is also addressed in Section 7.5 and Chapter 8 along with the
automated tools available.

4.7 TEST AND INTEGRATION

Currently much of the focus, in software quality, is on test. Although
this is an important area it cannot be stressed enough that the major
part of the quality effort should have been expended on the earlier
design activities. Nevertheless, there needs to be a hierarchy of test
documents and a structured approach to testing from coded modules
upwards to system test.

Stubs

Fig. 4.7.

www.manaraa.com

The Traditional Approach to Software Quality 47

Fig. 4.8.

The alternative to top-down integration involves the testing of
individual modules as they are produced. It is therefore necessary to
provide a minimum simulated interface to replace each of the as-yet
uncoded modules. These simulated modules are known as stubs.
Figure 4.7 illustrates the concept. As additional modules become
available they replace the stubs as shown in Fig. 4.8.

This is also discussed in Section 8.4.

4.8 SUBCONTRACTED AND BOUGHT-IN SOFTWARE

4.8.1 Shelf versus Custom Software
In terms of evaluation, and of confidence in the final product, the
quality problem is much the same. The circumstances of a proprietary
(off-the-shelf) product are that the visibility to the purchaser is greatly
reduced. Custom software, however, is usually produced on a project
basis such that the various activities of specification, design, test,
review and commissioning are visible to the customer.

In the case of 'off-the-shelf software the evaluation is usually
restricted to:

Evidence of field experience (if any).
Data from other users.
A vendor appraisal.

4.8.2 Vendor Appraisal
The requirement for a vendor appraisal is stated in most of the quality
systems (Section 5.3) and this is necessary for both of the above types
of purchase. Clearly, in the 'off-the-shelf case, it is even more critical
due to its being the main point of assessment.

The features which should be investigated are, broadly, those which
have been outlined in this chapter. In Chapter 5 the systems and
procedures which should be looked for are outlined.

A small vendor may well exercise adequate control by the use of

www.manaraa.com

48 Engineering Quality Software

simple, perhaps informal, documents. It should therefore always be
the aim to establish that genuine control is being applied rather than
efforts being directed to the production of impressive manuals and
standards which are not actually being used.

4.8.3 Field Experience and History
This will apply to proprietary software packages rather than to custom
packages. The following questions should be addressed:

(1) Who has purchased and used the package?
(2) Is there evidence of documented defects and subsequent correc­

tive action?
(3) How long has the package been in active use by consumers?

If it proves possible to contact users they might be asked:

(1) Do you keep a detailed log of the results obtained in using the
package?

(2) What is your experience with the vendor in following up and
resolving problems?

(3) Is the documentation adequate to permit easy modification of
the package?

4.9 AUDIT

This involves an assessment of the controls used in the design and
management process and an evaluation of their effectiveness. The
systems and guidelines (Chapter 5) provide a basis for the audit and,
in most cases, offer checklists as an aide memoire against which to
examine an organisation.

There are advantages and disadvantages in the use of checklists. On
one hand they provide a means of ensuring that each question is
remembered and thus enable the auditor to select the most appropri­
ate questions. Furthermore, the checklists can be revised and updated
as additional lessons are learned and, thus, one is always presented
with the total of previous experience.

On the negative side, however, there is a temptation to expect
yes/no answers and this can lead to a false view of the situation. In
most cases it is the reason for the answer rather than the answer itself
which provides the real information. For example, 'Is a high or low

www.manaraa.com

The Traditional Approach to Software Quality 49

level language being used?' has no right or wrong answer. The reasons
given for the answer are, however, of great importance.

In Section 11.3 the planning and conduct of an audit is described.

CHECKLIST 4.1 MANAGEMENT

(1) Is there a senior person with responsibility for software quality
and does he have adequate competence and authority to resolve
all software matters?

(2) Is there evidence of regular reviews of software standards?
(3) Is there a written company requirement for the planning of a

software development?
(4) Is there evidence of software training?
(5) Is there good housekeeping of listings, specifications and compu-

ter hardware?
(6) Is there a quality manual or equivalent documents?
(7) Is there a formal release procedure for deliverable software?
(8) Does every programmer have a dedicated VDU terminal or

reasonable access to one?
(9) Is there a Quality Plan for each development including:

Organisation of the team;
Milestones;
Codes of Practice;
QC procedures including release;
Purchased software;
Documentation management;
Support utilities;
Installation;
Test strategy?

(10) Is there evidence of documented design reviews? The timing is
important. So-called reviews which are at the completion of test
are hardly design reviews.

(11) Is there evidence of defect reporting and corrective action?
(12) Is there a fireproof media and file store?
(13) Are media duplicated and stored in separate locations?
(14) Are the vendor's quality activities carried out by people not

involved in the design of the product that they are auditing?
(15) Is account taken of media shelf life?
(16) Are there audits of documentation discrepancy?
(17) Are the quality activities actually planned through the project?

www.manaraa.com

50 Engineering Quality Software

CHECKLIST 4.2: DOCUMENTATION HIERARCHY AND
CONTROL

(1) Is there an adequate structure of documentation?
(2) Are all the documents available?
(3) Do specifications define what must not happen as well as what

must?
(4) Is the format of the documents consistent?
(5) Is change control in operation?
(6) Are development notebooks in use? (If so, audit a sample for

completeness.)
(7) Are the requirements of the higher level specifications accurately

reflected down through the other documents to module level?
(8) Are there a significant number of parameters left 'To Be

Determined'?
(9) Is 'automatic coding' (use of coding lines on flowcharts) in use?

(10) Do actual documents and firmware (PROMs) correspond to the
build state records? (Do sample checks.)

(11) Are maintenance manuals:
(a) Adequately detailed and illustrated?
(b) Prepared during the design?
(c) Objectively tested?

(12) Are operating instructions adequately detailed and illustrated?
(13) Is there a standard or guide for flowcharts, diagrams or pseudo

code in the design of modules?
(14) Are there written conventions for file naming and module

labelling?

CHECKLIST 4.3: PRODUCT DOCUMENTATION

Duplicate sufficient of this Checklist for the number of subsystem
module and changenote audits.

Date Module
System Auditor
Subsystem

(1) Are coding and format standards observed (block structures,
headers)?

www.manaraa.com

The Traditional Approach to Software Quality

(2) Is issue control correctly applied?
(3) Is the documentation complete?
(4) Are there marked up documents present?
(5) Is the module a self-contained, perceivable unit?
(6) Is there one entry and one exit?

51

(7) Does the module implement all the parameters of the
specification?

(8) Is the program adequately commented?
(9) Is it easy to cross-reference to other specificatons?

(to) Are there any off-page connectors?
(11) Are GOTO statements used?

Comments

CHECKLIST 4.4: CHANGE CONTROL

(1) Is there a named documentation controller?
(2) Is there a documentation plan (list of all documents)?
(3) Is there a distribution list for each document?
(4) Are there written rules for the holding of originals?
(5) Is there a written procedure for the release of both the media and

the documents? (Audit by looking at examples.) N.B. There may
well be levels of release (e.g. internal and external).

(6) Is there a record of all amendments?
(7) Is there a written change control procedure?
(8) Is there a named change controller?
(9) Is there evidence of software quality control:

Audit records;
Named software quality engineer?

(to) Is there evidence of hardware/software change coordination?
(11) Are all issues of program media accurately recorded?
(12) Are all software patches identified, recorded and dealt with?
(13) Is there a system for the removal and destruction of obsolete

documents from all work areas?

www.manaraa.com

52 Engineering Quality Software

Note:
(a) Sample the effectiveness of the change system by taking samples

from the work areas.
(b) Documentation control needs to be realistic and flexible. A good

rule is that a programmer needs to exercise formal documentary
control over a piece of code only once a change will affect another
person.

CHECKLIST 4.5: PROGRAMMING STANDARDS

(1) Is there a document defining program standards?
(2) Is each of the following covered:

Block lengths;
Size of codable units (module size);
Use of globals;
Use of GOTO statements;
File security;
Operator error security;
Unauthorised use security;
Recovery conventions;
Data organisation and structures;
Memory organisation and backup;
Error correction software;
Automatic fault diagnosis;
Range checking of arrays;
Use of PROM, EPROM, RAM, disc, etc;
Structured techniques;
Treatment of variables (i.e. access);
Coding formats;
Code layout;
Comments (REM statements);
Rules for module identification?

(3) Is there reference to structured programming?
(4) Is there a library of common program modules?
(5) Is the 'top-down' approach to software design in evidence?
(6) Is high level or low level language used? Has there been a

conscious justification?

www.manaraa.com

Chapter 5

Current Standards and Guidelines

5.1 THE NEED FOR STANDARDS

The recognition of a need for standards dates back many centuries.
Probably the earliest example is that of weight standards to ensure
uniformity and understanding when purchasing quantities of goods. A
highly industrial society naturally develops standards to cope with the
compatibility problems of rapid technological change and the need to
trade globally.

The software industry has discovered over the years that the use of
standards can lead both to economies in production and to ensuring
that particular requirements are universally understood. In just the
same way that two manufacturers, one of nuts and the other of bolts,
must set standards to enable their products to be of use to a consumer,
there is also a need for the software industry to ensure the com­
patibility of its tools and products. A proliferation of different
languages, operating systems, etc., may lead to diversity and choice
but it also minimises portability and interoperability, which does
neither the supplier nor the producer much good.

5.2 HOW STANDARDS EVOLVE

There are a number of ways in which standards are produced and
evolve. The first is by the identification, by a group or organisation,
that efficiency can be achieved by adhering to common methods and
tools on some topic. Alternatively an independent body might propose
a new standard in order to initiate discussion and consultation which
will lead to that standard being established in some form. A very

53

www.manaraa.com

54 Engineering Quality Software

Fig. 5.1.

common route is that whereby manufacturers join together and define
some common standard which they all agree to work to in order that
the consumer's requirements of interoperability can be met. There are
also benefits arising from a reduction in competition by agreeing to a
standard approach.

Standards tend to evolve from changes in market conditions or from
changes in the user's requirements. Standards must clearly be re­
viewed on a regular basis in order to ascertain their suitability for the
conditions at that time.

Figure 5.1 is an attempt to represent the evolution of standards.

5.3 A SUMMARY OF CURRENT QUALITY SYSTEMS

There are a number of quality systems which have been developed
over the last decade. Naturally, there is a degree of overlap in the
requirements since many are developments based on previous docu­
ments. Table 1 gives an outline.

5.3.1 UK Defence Standard 05-21
This was evolved, in the early 1970s, from the NATO AQAP 1
standards. Essentially it lays down the areas for procedures in design,
procurement, manufacture and installation for a total system of
quality. Each paragraph is expanded in Standard 05-22 which describes
the requirements in detail. The basic requirement is that one operates
adequate controls in order to run the particular business in question so
that products conform to specification. This provides the flexibility

www.manaraa.com

T
A

B
L

E

1

Q
ua

lit
y

sy
st

em
s

m
od

el

N
ot

e
Se

e
Se

ct
io

n
fo

r
qu

al
it

y
as

su
ra

nc
e

in

de
si

gn
 /

de
ve

lo
pm

en
t,

pr

od
uc

ti
on

,
in

st
al

la
tio

n,
 a

nd

se
rv

ic
in

g

C
iv

il

IS
O

IS

O
 9

00
1:

 1
98

7
E

ur
op

ea
n

5.
3.

6
C

E
N

E

N
 2

90
01

(
]

;::

B
el

gi
um

N

B
N

 X
 5

0-
00

3
... ~

C
an

ad
a

C
S

A
 Z

29
9.

1-
85

a v,

F
ra

nc
e

N
F

 X
 5

0-
13

1
S ;:.

N
et

he
rl

an
ds

N

E
N

 2
64

6
l}

~

N
or

w
ay

N

S
 5

80
1

;::
, ;:.

S
w

it
ze

rl
an

d
SN

 0
29

 1
00

A

"'- Cl

U
ni

te
d

B
S

57
50

:
P

ar
t

1
Q

A
S

 3
30

2
;::

5.
3.

2
~

K
in

gd
om

(I

S
O

 9
0

0
1

-1
9

8
7

)
ad

dr
es

se
s

so
ft

w
ar

e
s:

U
n

it
ed

 S
ta

te
s

A
N

S
I/

A
S

Q
C

 Q
9

1
-1

9
8

7

~

W
es

t
G

er
m

an
y

D
IN

 I
S

O
 9

00
1

M
ili

ta
ry

N

A
T

O

A
Q

A
P

-1

re
pl

ac
es

 O
S/

21

5.
3.

3
(5

.3
.1

)
U

n
it

ed
 S

ta
te

s
M

IL
-Q

-9
85

8A

(d
ef

en
ce

)
U

K
 M

O
D

D

ef
-S

ta
n

N
o

t
ye

t
00

-5
5

pu
bl

is
he

d
5.

3.
5

(5
.3

.4
)

R
ep

la
ce

s
00

-1
6

V
l

V
l

www.manaraa.com

56 Engineering Quality Software

which permits both simple and complex sets of quality procedures to
satisfy the standard, provided that they are adequate for the type of
business and product. The requirements are sufficiently general that
they cover the design and production of both hardware and software.
Although specific software controls are not mentioned they are
implied by calling for adequate product documentation and controls
during all phases of design and manufacture.

The 05-2x series embraces:

05-21 Systems for design and manufacture.
05-24 Systems for manufacture.
05-29 Systems for inspection.

The requirements of the lower standards (higher numbers) are
contained within the higher ones. In other words the requirements
stated in 05-21 are those of 05-24 with additional controls covering the
design and engineering activities.

The associated standards are:

05-22 Describes 05-21 in detail.
05-26 Covers calibration.

The 05 series was replaced from 5 September, 1985 by the AQAP
series (see Section 5.3.3).

5.3.2 British Standard 5750 (1987)
This followed in the late 1970s as a civilian standard for quality
systems and is very similar to the 05-2x series. In fact any quality
system which conforms to BS 5750 will almost certainly conform to the
appropriate Defence Standard 05-2x. In a similar way the Part
numbers of BS 5750 embrace design and manufacturing as did 05-21
and 05-24. BS 5750 was reissued in 1987.

Part 1 Specification for design, manufacture and installation.
Part 2 Specification for manufacture and installation.
Part 3 Specification for final inspection and test.

Parts 4, 5 and 6 are detailed guides to Parts 1, 2 and 3 respectively.
Technical schedule QAS 3302 is one additional feature of BS 5750

and provides some additional specific requirements for the quality of
software. These include control of records, CO,des of Practice, aspects
of software design, subcontracted software and software design tools.

BS 5750 has been offered as an International Standard, ISO 9001
(See Section 5.3.6).

www.manaraa.com

Current Standards and Guidelines

5.3.3 NATO Standards-AOAP Series
The AQAP series is similar to the 05 series described above.

AQAP 1 Similar to 05-21 and BS 5750 Pt 1.
AQAP 2 Similar to 05-22.

57

AQAP 13 is specific to software and addresses Codes of Practice. It is
written as a supplement to AQAP 1 which is the broader quality
standard. Nevertheless AQAP 13 may be used as a stand-alone
document. It covers organisation, system review, planning, documen­
tation, corrective action, design review, configuration management,
subcontract software, support, purchasing, testing and handling.
Furthermore, it specifically calls for a quality plan, which is not the
case with the other standards.

AQAP 14 is guidance on 'Evaluation of a contractor's QA system
for compliance with AQAP 13'.

5.3.4 UK Defence Standard 00-16
This is called 'Guide to the Achievement of Quality in Software' and
was published, as Issue 1, in 1980. It is a comprehensive outline of
software quality activities as they are currently applied and covers all
types of software and firmware.

There are three major areas of guidance and ten appendices which
feature checklists for each major software activity. The three areas
are:

Pre-contractual activities. This addresses the establishing of require­
ments and the overall planning of the software life-cycle.

Codes of Practice. This section identifies the areas where standards
are needed, such as documentation, configuration management, design
review, test and subcontract.

Software quality procedures. Here the activities are listed and
described.

The appendices are:

(A) Pre-contractual activities.
(B) Planning for software quality.
(C) Design and programming techniques and methods.
(D) Documentation.
(E) Configuration management.
(F) Design reviews.

www.manaraa.com

58 Engineering Quality Software

(G) Tests.
(H) Trials procedures.
(J) Transfer to customer.
(K) Subcontracting of software.

5.3.5 UK Defence Standard 00-55
Although not yet published in draft, some information has been made
available on this new Def-Stan which it is proposed will come into use
in 1989. The purpose of this new Def-Stan is to provide a standard for
the development of software for use in safety critical systems. Within
such systems the use of software to provide safety critical functions has
an inherent problem of the unpredictability of software, in particular,
the difficulty in testing software thoroughly. In a non-critical system
this can be problem enough; in a safety critical system it is obviously a
severe problem. The MOD approach is to use formal, mathematical
methods supported by tools such as Malpas and SPADE (see Chapter
8). Although there is still some way to go before industry accepts the
content of 00-55 there is little doubt that its general principles will
come into being.

5.3.6 ISO 9001 (1987)
This is the European Quality standard published in 1987. It is a similar
series to the BS 5750 System. Thus:

ISO 9001-BS 5750 Pt 1
ISO 9002-BS 5750 Pt 2
ISO 9003-BS 5750 Pt 3

Whilst ISO's Technical Committee (ISO/TC 176) has tapped the
combined experience of its member countries in developing the new
9000 series of standards, the influence of the British experience and
leadership in using BS 5750 (1979) is most evident. This can be seen by
the close correspondence of many parts of ISO 9000 to parts of
BS 5750 (1979) and the similar specification of models for three levels
of quality systems. Most importantly, however, these new ISO
standards represent improvements in terms of more comprehensive
and strengthened requirements, improved readability and practical
use for both the supplier and customer.

www.manaraa.com

Current Standards and Guidelines 59

5.4 CURRENT SOFTWARE STANDARDS AND GUIDELINES

There are many standards and guidelines which address the documen­
tation and development of software. The following sections describe
the major documents currently in use.

5.4.1 HSE Document: Programmable Electronic Systems in
Safety Related Applications (UK)

In 1981 the HSE issued a booklet, Microprocessors in Industry, which
broadly addressed the problem of microprocessors in plant applica­
tions. This led, in 1984, to the drafting and subsequent public
comment on a document originally called Guidance on the Safe Use of
Programmable Electronic Systems. The guidelines were published in
June 1987.

It has been recognised that, due to the wide spectrum of program­
mable electronic system (PES) applications, further second-tier docu­
ments, covering guidance on the development of specific applications,
should follow. This should ultimately lead to simpler guidance and a
more consistent approach to specific applications.

The guidelines are aimed at giving generic guidance on optimising
the integrity of programmable equipment wherever it is used to
provide a safety system. If the safety features are adequately satisfied
by non-programmable equipment then the document does not apply,
although the principles, in fact, apply equally well to any software or
hardware system.

The document is in two volumes:

(1) An Introductory Guide.
(2) General Technical Guidelines.

Volume 2 considers the assessment strategy with respect to three
characteristics:

(a) The configuration.
(b) The hardware reliability.
(c) The system integrity, which includes the quality of design and

implementation of the hardware and software.

It addresses a number of basic system configurations involving both
totally programmable and mixtures of programmable and non­
programmable equipment. Three principles are given for assessing the

www.manaraa.com

60 Engineering Quality Software

acceptability of a configuration. In summary they state:

(1) The combined number of programmable and non­
programmable safety systems shall not be less than the number
of conventional systems traditionally used.

(2) No single hardware failure in any PES shall cause a dangerous
mode.

(3) No single software failure should cause a dangerous mode.

Figure 5.2(a) illustrates a single PES protecting some part of a
process. Figure 5.2(b) shows two alternative protection systems where
one is programmable and the other is hardwired. This arrangement is
regarded as satisfactory provided that no feature of the software can
inhibit the protection function of the hardwired backup. Figure 5.2(c)
shows another duplicated protection system where both systems
consist of PESs. In this case diversity of software is urged such that the
two channels consist of separately designed and coded software. This

(a)

PES

NON PES

(b)

Fig. 5.2.

www.manaraa.com

Current Standards and Guidelines 61

technique for achieving fault tolerance is by no means a total defence
against common-cause failure and the reasons for this are discussed in
Chapter 10.

Other configurations are described and discussed covering both
control and protection systems. Many design and environmental
considerations are listed, such as the features described in Chapter 10.

It also addresses software quality and describes methods of hard­
ware safety and reliability analysis such as fault tree and failure mode
analysis, as well as offering 25 pages of checklist questions covering
similar items to the checklists in this book. The integrity assessment
requires that the relevant questions be addressed.

As discussed in Section 4.9, the use of checklists carries both
advantages and disadvantages:

(a) They provide an aide-memoire so that essential features are not
overlooked.

(b) They should not be used slavishly but as a menu from which to
select the pertinent areas for the task in hand and should
therefore be used only by experienced auditors.

(c) They constrain lateral thinking by giving the impression of being
exhaustive.

5.4.2 lEE: Guidelines for the Documentation of Software in
Industrial Computer Systems (UK)

This document was prepared by the Institution of Electrical Engineers
(lEE) Computing Standards Sub-committee and published in 1985.
It is a fairly thorough treatment of the major documents required for
software requirements and design documentation.

Section l-'Introduction to the guidelines'--draws attention to the
range of software system types, covering:

Fixed program systems (e.g. event loggers).
Limited variability systems (e.g. PLCs).
Full variability systems (e.g. real time control systems using a high
level language).

Throughout the guidelines the type and size of each document
applicable to each of the above types are addressed.

The software life-cycle is briefly introduced together with the
associated areas of documentation.

Section 2-'User requirements specification'-provides a thorough
template for writing requirements specifications using the traditional

www.manaraa.com

62 Engineering Quality Software

free expression. (Chapter 6 will cover the future trends 10 formal
specification languages.) This section includes:

A description of the purpose of a requirements specification.
Its objectives and structure and the need for unambiguous measur­
able requirements.
Operating requirements (e.g. consoles, inputs, outputs, graphics,
alarms, safety, security, timing, printing).
Interface requirements (e.g. electrical, logical, human, digital!
analogue, series/parallel).
Environmental requirements.
Attributes (e.g. availability, repair times, documentation,
adaptability) .
Section 3-'Functional specification'-provides an overview of the

specification which follows from the user requirements specification
and describes how the system will meet these requirements. The
outline covers:

A description of the purposes of a functional specification.
Its structure.
System functions (e.g. control functions, malfunction response, data
to be stored, operating procedures, safety and security).
System interfaces (e.g. human, data, real time, I/O,
communications) .
System attributes (e.g. reliability configuration, maintenance and
support facilities).
Design and Test constraints (e.g. language, test methods, quality
plans, design tools to be used).

The essential difference between the user requirements and func­
tional specifications is that the latter describe features and parameters
whereas the former state more generalised requirements.

Section 4-'Software system specification'--covers the hierarchy of
design documents including a mention of the module level. Modules of
code are referred to as programs. The section describes the specifica­
tion in the following hierarchy and gives a description of each level.

System structure. The breakdown into subsystems.
Subsystem structure. The breakdown of subsystems into program
modules.

www.manaraa.com

Current Standards and Guidelines 63

Data. Inputs, Outputs and data bases.
Functions and relationships. Functional features and information
flow.

The module level of code is not emphasised as strongly as in Chapter 4
of this book.

Section 5-'System acceptance testing'---<lescribes the means by
which the supplier demonstrates that the requirements of the func­
tional specification have been met. The following documents are
described:

Test philosophy. The overall scope, range and types of test.
Test plan. A schedule of activities.
Test specifications. Detail of each test.
Test logs. A record of all events.
Test summary. A summary of test failures.
Commissioning report. An overall summary including any modifica­
tions carried out.
Certificate of acceptance. A formal contractual acceptance
document.

Section 6-Post-installation documentation-outlines the operating
and maintenance documents but also includes development documen­
tation (drawings, listings, etc.) and general contractual documents
(licences, warranty, ownership, etc.). The quantity of post-installation
documentation will vary considerably between fixed program, limited
and full variability systems.

Section 7 addresses the purpose and implementation of configuration
control.

Section 8 provides a glossary and bibliography.

5.4.3 EEA: Guide to the Quality Assurance of Software (UK)
The EEA (Electronic Engineering Association, 8 Leicester Street,
London WC2H 7BN, UK) document was issued in 1978 and was one
of the earliest guides to give a thorough coverage of software quality.

Six pages describe the activities, quality controls and documentation
for each of the following life-cycle activities:

Design definition.
Planning.
Design implementation.
Design evaluation and test.
Post-design support.

www.manaraa.com

64 Engineering Quality Software

There follow about 20 pages of detailed checklists addressing each of
the life-cycle activities, including the production of a quality plan and
the subcontracting of software design.

5.4.4 EEA: Establishing a Quality Assurance Function for
Software (UK)

This is a companion document to the Guide to the Quality Assurance
of Software described above in Section 5.4.3 and was published in
1981. It is in six sections, covering:

The need for software quality.
Software quality functions:

Standards, planning, tasks, etc.
Responsibilities:

For managers, designers, quality staff, etc.
Personnel:

Recruitment, training, motivation, etc.
Practical aspects:

e.g. standards, tools and techniques, simulations.
Cost effectiveness.

There are two Appendices:

The software life-cycle.
A compendium of standards.

5.4.5 EEA: Software Configuration Management (UK)
Also published by EEA, this guide followed in 1983 and seeks to
highlight the differences between hardware and software configuration
management. It is quite compact (15 pages) and consists of:

Introduction.
Principle of configuration management:

Defines specification boundaries.
Covers changes and controls.
Covers subcontract control.
Covers management plans.

Application to projects:
Defines items controlled at various stages of the design cycle.

Automated systems for configuration control:
Features.
Advantages and disadvantages.

www.manaraa.com

Current Standards and Guidelines 65

5.4.6 EEA: A Guide to the Successful Start-Up of a Software
Project (UK)

Another EEA guide, published in 1985, which addresses the start-up
activities of a software project and is intended for managers with little
experience in such projects. It includes:

Introduction.
Initial considerations:

Guidance on information needed, sources of information and
information to be generated.

Customer requirements--Review:
Reminds one of areas to be considered.

Constraint criteria:
Introduces the idea.

Project planning:
Lists some methods.

Project structure and responsibilities:
Guidance on programmes and schedules.

Configuration management:
Refers to the EEA guide (Section 5.4.5).

Documentation standards:
Mentions the need for standards.

5.4.7 Ministry of Defence MASCOT (UK)
MASCOT stands for Modular Approach to Software Construction
Operation and Test and is the MOD-preferred design method for Real
Time Software development. It was developed between 1971 and 1975
at the Royal Signals and Radar Establishment (RSRE) and culminated
in an official handbook in 1980. Further information can be obtained
from Computer Applications Division, RSRE, Malvern, Worcester­
shire WR14 3PS, UK.

MASCOT is more than a guideline to software production. It is a
development methodology consisting of:

A standard graphical design method.
A suite of construction software.
An executive program for controlling module interactions.

It is therefore also addressed in Chapter 6 (Section 6.6.7), where
various requirements methodologies are described.

www.manaraa.com

66 Engineering Quality Software

Mascot was originally developed to assist in the design and
development of Coral 66 based systems. Recently however the
development of Mascot 3 has extended the capability of Mascot and
also facilitates more readily the use of Mascot in an Ada based
environment.

5.4.8 Ministry of Defence JSP188: Requirements for the
Documentation of Software in Military Operational
Real-Time Computer Systems (UK)

This is a Joint Services Publication (of 1980) which, in a similar
manner to the lEE document (Section 5.4.2), describes the hierarchy
of documents necessary to implement software maintenance. The
definitions are somewhat different, however, and can be summarised
as follows:

Level 1. This is a 'functional specification' level which includes:

System block diagram.
Software task and global data diagrams.
Text.
Timing details.

Level 2. This describes the tasks structure and defines data areas
and the interconnection between parts of the system.

Level 3. This describes the internal functional structure of each
process by means of flow diagrams.

Level 4. This is the module level where basic coded units are
documented and coded. The module specifications and definitions (as
described in Chapter 4) occur at this level.

5.4.9 IEEE Software Engineering Standards (USA)
The Institution of Electrical and Electronics Engineers (IEEE) have
developed, over a number of years, an extensive set of standards to
enhance communication between software engineers and to provide
guidance on the types, formats and content of software documents as
well as on the activities in the software life-cycle. The standards, whilst
being detailed, are nevertheless more generic in nature in that many
organisations would need to tailor them to their needs. That having
been said they still represent one of the best set of standards available
and are strongly recommended.

www.manaraa.com

Current Standards and Guidelines

The standards available at the time of writing are:

729-1983 Glossary of Software Engineering Terminology
730-1984 Software Quality Assurance Plans
754-1985 Binary Floating-Point Arithmetic
828-1983 Software Configuration Management Plans
829-1983 Software Test Documentation
830-1984 Software Requirements Specification

67

854-1987 Radix & Format Independent Floating-Point Arithmetic
983-1985 Software Quality Assurance Plan
990-1987 Ada as a Program Design Language
1002-1987 Taxonomy for Software Engineering Standards
1003.1-1988 Std Portable Operating System Interface for Compu-

ter Environment
1008-1987 Software Unit Testing
1012-1986 Software Verification & Validation Plans
101&-1987 Software Design Descriptions

The above only represent the software and software related standards.
There are many more which cover subjects such as LAN's, Back­
planes, etc.

5.4.10 ElektronikCentralen: Standards and Regulations for
Software Approval and Certification (Denmark)

This was published in 1984 and reviews the software quality problem
with respect to safety critical systems (as does the HSE document,
Section 5.4.1). Sources of failures and defences against them are
described in some detail. The contents are:

Introduction.
Requirements to software in critical applications.

Critical applications.
Microprocessor characteristics.
Software quality features.
Attributes for safety.

High reliability design.
Safeguards and handling.
Wilful misuse.
Fault dictionaries.
Fault correction.

www.manaraa.com

68 Engineering Quality Software

Fail safe.
Fail operational.

Measurement of safety attributes.
Software quality (as described in Chapter 4 of this book).

5.4.11 Guidelines for the Nordic Factory Inspectorates
ElektronikCentralen has prepared a report which will form the basic
material for guidelines to improve the safety and integrity of systems
using microprocessors. They propose safety assessments which follow
the general format of the CEC collaborative project (see Section
11.5.5) and cover the following seven steps:

Defining the system boundary.
Hazard analysis.
Specifying the safety requirement.
Identifying safety critical subsystems.
Analysing the safety critical subsystems.
Certification criteria.
Change management.

The guidelines contain design recommendations and checklists.

5.4.12 TUV Handbook: Microcomputer in der
Sicherheitstechnik (Germany)

This was written to meet the need for a set of requirements to cover
microcomputerised safety devices and gives advice to the developers of
safety critical microcomputer systems. It contains:

'a catalogue of system layouts/structures and safety measures for
microcomputer control systems, and shows the way to select those
safety measures which will ensure that, in a given situation, the
requirements of the relevant legislative provisions will be complied
with. There are in this connection a number of possible options from
which the designer or manufacturer can choose, in accordance with the
operating conditions which he has specified for his product, so as to
provide the optimum solutions for the problems in hand.'

The book classifies five categories of safety applications and
provides examples and standards for each. It is not, as such, a national
standard, but will doubtless provide the main input to any future
DIN/VDE standard.

www.manaraa.com

Current Standards and Guidelines 69

5.4.13 EWICS TC7 Documents
In Section 11.5.4 the activities of this EEC-funded workshop on
industrial real time computer systems are described. The output
consists of:

Book 1 published in 1988 which includes six papers:

1. Development of Safety Related Software. October 1981
2. Hardware of Safe Computer Systems. June 1982
3. Guidelines for Verification and Validation of

Safety Related Software. June 1983
4. Guidelines for Documentation of Safety Related

Computer Systems. October 1984
5. Techniques for Verification and Validation of

Safety Related Software. January 1985
6. System Requirements Specification for Safety

Related Systems. January 1985

Book 2 to be published in 1989 to include:

1. System Integrity.
2. Software Quality Assurance and Metrics.
3. Design for System Safety.
4. System Reliability and Safety Assessment.

Book 3 to be published in 1989 on the techniques for safety
assessment and design of industrial computer systems. It will sum­
marise safety analysis, fault avoidance, fault and failure detection and
containment.

5.4.14 CEC Collaborative Project
Section 11.5.5 describes this European-funded project and the inten­
tion to publish a set of guidelines and also a wide-ranging review of
documents in the PES area. The guidelines will contain:

A guidelines framework for assessing PESs.
A future strategy for developing the guidelines.
An assessment example.
A tabulation of techniques.
A review of electromagnetic capability requirements.
A glossary.

www.manaraa.com

70 Engineering Quality Software

5.4.15 US Department of Defense Standard 2167: Defense
System for Software Development

This is a 90-page document (4 June, 1985) which is difficult to
summarise in a few lines. It contains much detail concerning the
methods described in this book and has several useful diagrams of the
software development cycle. The overall sections are:

Definitions.
General requirements:

Involving the software design cycle, organisation, subcontract,
etc.

Detailed requirements:
Two to three pages on each aspect of the life-cycle (requirements,
preliminary design, detailed design, coding, testing, etc.).

Coding standards.

The standard has recently undergone a revision with some change of
emphasis and additions. Perhaps the most interesting change is that
contractors now have to produce a risk management plan in which
their strategy for the management and assessment of risk is related to
the specification, design and development of software.

5.4.16 IECCA: Guide to the Management of Software-Based
Systems for Defence, 3rd Edition

The Inter-Establishment Committee on Computer Applications was
set up in 1968 and is an MOD body. Its purpose is to address real time
computing and computer-based systems and, in particular, the evalua­
tion of CORAL 66 and Ada compilers as well as the development of
MASCOT. It also considers the production of advice, recommenda­
tions and guidelines.

This guide concentrates on real time systems and covers the main
items in the design-cycle. It also addresses procurement policies:

System life-cycle:
Outlines the cycle and the main activities.

Potential problems and risks:
Escalating requirements, delivery, cost, maintenance.

Management techniques:
Feasibility, specifications, validation and test.

MOD Policy for real time systems:
Hardware, software, administration, future.

Impact of procurement policies:
National, EEC, NATO.

www.manaraa.com

Current Standards and Guidelines 71

The guide may be obtained from The Secretary, IECCA, RSRE,
Ministry of Defence, St Andrews Road, Great Malvern, Worcs. WR14
ILL, UK.

5.4.17 I Gas E: SR15, The Use of Programmable Electronic
Systems in Safety Related Applications in the Gas
Industry

In response to the HSE Guidelines (5.4.1) the Institution of, Gas
Engineers plan to publish, in 1989, a second tier guidance document.
It aims not to repeat the guidance given in 5.4.1 but to provide
additional specific guidance for safety related systems in the gas
industry. Specific applications sections cover:

Burners and combustion.
Domestic appliances.
Supply pressure and flow control.
Fire and gas and shut-down systems.
Plant and grid management systems.
Distribution holder control.
Miscellaneous.

5.4.18 EEMUA: Safety Related Programmable Electronic
Systems

The Engineering Equipment and Materials Users Association, also in
response to the HSE Guidelines (5.4.1), have published a second tier
document entitled 'Safety Related Programmable Electronic Systems'.
It covers:

Relevant standards.
Definition of terms.
Assessment of application requirements.
Qualitative assessment of safety system applications.
General design consideration.
Design specification.
Changes and modifications.
Design-environmental aspects.
Testing and commissioning.
Operation and maintenance.

5.4.19 STARTS: The STARTS Guide
The STARTS (Software Tools for Application to Real Time Systems)
guide was prepared under sponsorship of the DTI and coordinated by

www.manaraa.com

72 Engineering Quality Software

the National Computing Centre. The emphasis is on tools and
methods which are available for the management and control of
software development. The preparation of the guide was undertaken
by teams drawn from industry and is able to draw on their experience
and use of the tools and methods. There are five categories within the
guide which is now in its 2nd edition.

Project management.
Configuration management.
Project support environments.
Requirements definition and design.
Verification, validation and testing.

For each of the above headings the range of currently available tools
and methods is discussed and described with an assessment given
against common criteria. In addition there are three other
publications:

The STARTS Purchasers' Handbook-Published by the STARTS
Purchasers Group of major public and private sector purchasers of
large real-time systems. It harmonises their procurement practices and
software engineering requirements to be placed on suppliers. The
Handbook outlines best practice in specifying, purchasing, and main­
taining real-time systems and indicates the level of software engineer­
ing which purchasers should expect from their suppliers.

STARTS Debrief Reports-Practical reports by users documenting
their experience with specific software methods and tools contained in
the first edition of the STARTS Guide.

A short video programme-Introduces the STARTS approach to
senior management and others new to software engineering.

5.4.20 Some Other Documents
EQD Guide for Software Quality Assurance, MOD Procurement
Executive, 1977.

An early attempt to give guidance on the subject.

JPL Publication 78-53. Standard Practices for the Implementation of
Computer Software, NASA.

A description of software management functions.

MIL-STD-1679. Weapon Systems Software Development.

This outlines the minimum requirements for software development.

www.manaraa.com

Current Standards and Guidelines 73

MIL-S-52779A. Software Quality Assurance Program Requirements.

This is a US military guide equivalent to the above EQD document.
It is compatible with AQAP 13.

Software Engineering Standard (ESA).
A European Space Agency document which describes the full

software development life-cycle.

British Standard 4058. Data Processing Flow Chart Symbols, Rules and
Conventions.

British Standard 5476. Specification for Program Network Charts.

British Standard 5887. Code of Practice for Testing of Computer Based
Systems.

British Standard 3527. Glossary of Terms Used in Data Processing.

British Standard 5515. Code of Practice for the Documentation of
Computer Based Systems.

UK Defence Standard 05-67. Guide to Quality Assurance in Design.

One section deals with software quality.

5.5 SYSTEMS FOR THE FUTURE

Design requires a far more structured and integrated set of rules,
procedures and validation methods than are provided by the tradi­
tional hardware quality techniques. As a result, systems and standards
will continue to develop and will address new methods and tools as
they become available.

Looking ahead, the three features which will make quality systems
more effective in preventing and removing faults are:

Automation of controls. The control of documents and configura­
tion management, along with other clerical procedures, will reduce the
probability of faults being produced by use of the wrong issues of
media or documents. A computer clerical system which will not
proceed unless all the required documents, including inspection and
audit reports, are produced will make it very difficult to omit essential
documents.

Automation of specification and design. At present, requirements
specifications are written in ordinary English language. This has the
advantage that any nuance of expression may be attempted but carries

www.manaraa.com

74 Engineering Quality Software

the associated disadvantage of ambiguity. Currently, development is in
progress on a range of more formal structured expression languages
which will restrict the writer to a higher level English language
expression set. Mathematical methods can then be used to verify the
specification. This verification process will be automated into a type of
'macro-compiler' which will drastically reduce the more difficult faults,
namely those arising due to subtle ambiguities and omissions in the
specification. Chapter 6 will expand on this area.

Automated review of code. A range of test tools, known as static
analysers, applies many tests to the source code by means of automatic
suites of software. Whereas the requirements languages will improve
the specification activity, these analysers will identify the faults which
are created during design and coding. They are described in Chapter
8.

5.5.1 Paperless Design
The ideal for many years has been the idea of maintaining the whole
gamut of software, specification, design and development documenta­
tion in paperless form, i.e., in some automated system. Recently such
systems have begun to proliferate and are known by the acronym
CASE, standing for Computer Aided Software Engineering.

These tools enable development of software to take place at a
graphics workstation and supply, more or less, all the tools necessary
to develop software, including real-time systems. The main achieve­
ment so far of CASE tools has been the enabling of methodical
development of software through databases.

The overall process of CASE development starts with analysis of the
problem. Software analysis involves turning, broadly stated, am­
biguous requirements into detailed and consistent software specifica­
tions. The most popular method of achieving this is to use Yourdon­
De Marco diagramming methods which have been extended to
real-time and embedded systems using the Hatley and Ward-Mellor
methods, although these methods have not yet been widely adopted.
Design is achieved through further use of data-flow diagrams, struc­
ture charts and other diagramming methods which provide good
graphical representation of the system. CASE tools should not just be
automated diagramming tools but should also provide static checking
to verify that analysis and design rules are obeyed and that specifica­
tions and design are consistent and complete. Part 3 looks at some of
the methods and tools in more detail.

www.manaraa.com

PART 3

Software Quality Engineering­
An Ideal Approach

The next five chapters address the ideal software design approach in
each of the stages of the design cycle from requirements to test.

www.manaraa.com

Chapter 6

An Engineering Approach to
Defining Requirements

6.1 ENGINEER VERSUS PROGRAMMER

Anyone with mathematical aptitude and a little training can write a
computer program. The proliferation of computing in both home and
school is sufficient illustration of that fact. However, a program which
meets the requirements of easy use and maintenance demands quite
separate skills from those required for mere coding.

This need is often not appreciated by software managers who,
themselves, may well have risen from the ranks of these programmers.
Promotion is frequently on the basis of rewarded good or fast
programming despite the unfortunate fact that the skills required for
software management are not the same as those being regarded.

The software engineer, as distinct from the programmer, will be
concerned with:

Establishing the user requirements.
Verifying the user requirements.
Assessing and choosing the software design methods for the project.
Structuring and specifying tests.
Planning and implementing design reviews.
Choosing software tools (e.g. validators, compilers, test beds).
Criticising methods at the end of the life-cycle.
Deriving job satisfaction from team rather than personal
achievement.

Recalling Chapters 3, 4 and 5, we looked at quality disciplines and
controls which are applied over the programming activities largely in
order to remove faults. The software engineer, however, will embrace
these controls within himself and thereby generate better-quality

77

www.manaraa.com

78 Engineering Quality Software

software in the first place. This does not remove the need for the
software quality function in the design process but it does provide an
environment conducive to the production of fault-free design. The
benefits which follow from less schedule slippage and fewer failures
during test and integration will lead, in turn, to:

Better team motivation.
Milestone dates being met.
Smoother and hence more effective testing.
Lower costs.
Fewer changes, hence fewer subsequent faults.

The software engineer will be conversant with automated require­
ments expression languages and automated review tools such as static
analysers. Thus, traditional flowcharting/coding skills will become
much less significant. They will be replaced by more management­
oriented skills including:

Top-down decomposition of the requirement into a hierarchical
design.
Knowledge of automated tools.
Ability to plan and control design reviews and tests.
Ability to negotiate and interpret user requirements.

6.2 A NEW LOOK AT THE LIFE-CYCLE

This shift in emphasis from programming towards the concept of
software engineering puts a new focus on the software life-cycle.
Significant factors are:

(a) The emphasis is shifted from correction to prevention.
(b) The focus is on the requirements specification.
(c) Formal mathematical techniques in specifying the requirements

and in carrying out the design permit more complete, correct
and unambiguous code.

(d) The design process is longer and involves more frequent and
detailed design reviews.

(e) Test requirements become more embracing since they are
evolved from the very beginning of the design process.

(f) There is better visibility to the design and code, hence diagnosis
and field maintenance are smoother.

www.manaraa.com

An Engineering Approach to Defining Requirements 79

(""50" ,,,Jc.no, CO"''''TE

C """" ,,1, CO""'" 4---------~ MILESTONES

("ST'''' .. 01",GR.no, CO""",

(EVA""'O' L""", t
Fig. 6.1.

The main aim is to prevent or remove faults as early as possible in the
cycle and thus minimise man-hours. Figure 6.1 shows the familiar
design cycle but emphasises two aspects:

(1) Feedback is provided at each stage of design. The emphasis is
on making each stage of the design fault free before progressing
to the next. The software engineer or enlightened software
manager will recognise the need to resist pressures to save time
on review in order to carry on with further design. It will be
understood that this will only cost more time in the long run and
that by then the position will not be recoverable by expending
extra effort.

(2) There are four milestones for formal review. These formal
milestones do not obviate the need for individual design reviews
after each separate work package. Design review of each
module will be carried out at supervisor level with the engineer
and his colleagues.

www.manaraa.com

80 Engineering Quality Software

6.3 CURRENT STATE OF THE ART

Regrettably, current practice usually emphasises test results and test
methods. In contrast to the software engineering approach, the
emphasis is later in the life-cycle, resulting in larger and more
expensive modification (Figs 1.4 and 1.5, Chapter 1). It leans more
towards correction than to prevention and fails to recognise the
benefits of the philosophy and techniques which occupy the remainder
of this book.

The current emphasis placed on dynamic testing is difficult to justify
since there is no strict methodology behind it other than the concept of
'full coverage' testing. However, complex systems defeat this attempt
at completeness in testing. In many cases whole portions of code are
opaque to the testing process.

Some automated techniques are in current use, mostly in the area of
test (see Chapter 8). They improve the speed and efficiency of the
debug process but still emphasise correction rather than prevention.
Similarly, the two static analysers currently in use (Chapter 8) remove
faults already committed in the code.

The breakthrough in software quality engineering requires a fun­
damental change to the initial process of describing the requirements.
Frequently the actual problem to be solved is not clearly understood,
as a result of which one takes refuge in describing the system in terms
of its architecture, that is to say in terms of memory, peripherals,
compilers, communications, etc. However, this pre-empts the design
process, which is where such features should be specified.

At the requirements stage it is a 'functional architecture' which
should be defined. The functional architecture of a problem is by no
means the same as the system architecture employed to solve it.

There is an increasing awareness that validation and test aids are not
enough to ensure software quality and that improved requirements
specification techniques are required. There is much development in
this area and the remainder of this chapter will describe the situation.

6.4 FORMAL VERSUS FREE EXPRESSION

It has already been stated that the original requirements specification
is a major source of software failures. Clearly, if the programmer has
been directed to solve the wrong problem, or if the requirements are

www.manaraa.com

An Engineering Approach to Defining Requirements 81

incomplete, ambiguous, or not understood, then even error-free
design will still result in system failures as perceived in use. The
potential for creating faults in the requirements specification arises
largely from the fact that they are written in freely expressed English
language. On one hand this permits a comprehensive description but,
on the other, provides a vehicle for ambiguity and lack of clarity.

Formal requirements languages are fairly new, stemming from the
middle 1970s, and in most cases are still under development along with
the software tools which accompany them. They constrain the writer
to the use of mathematically precise methods and expressions and, as a
result, protect against ambiguity. Because they involve mathematical
rules it is possible to verify a requirements specification by formal
analysis methods. These 'proofs' are highly theoretical and are,
mostly, carried out manually. In the future this process will certainly
become automated and indeed some tools already exist.

6.5 EXPRESSING REQUIREMENTS-SPECIFICATION
TECHNIQUES

The fact is that system requirements are highly complex, interactive
and often ill-defined. There is no avoiding this problem and it must be
faced that inadequacies in requirements definition lead to faulty
design. Hence a requirements specification must embrace the follow­
ing descriptions which together comprise the total requirement.

(a) Why the system is needed in technical, economic, maintenance
and operating terms.

(b) What functions the system needs to fulfil. This does not involve
how they are actually performed since that is part of the design.

(c) Conditions which place limitations on the design.

In an earlier paragraph (Section 6.3) we referred to a functional
architecture. Requirements specifications seek to communicate this
and the design process to implement it by means of a system
architecture. The approach is therefore more abstract, which un­
fortunately deters many from considering the methods available. They
need not be any harder to understand.

The difficulty inherent in specification is the language. If plain

www.manaraa.com

82 Engineering Quality Software

English is used to express the specification then it is necessary to
embrace not only the problem to be defined but the imprecisions and
ambiguities of the language. Pitfalls include:

Dangling ELSE:
e.g. A must equal B or C. No mention of what happens if not.

Ambiguity of reference:
e.g. Add X to Y. This must be positive. What? X, Y or their
sum?

Ambiguous words:
e.g. 'usually', 'quickly'.

Ambiguous logic.

Plain language provides the scope for free expression and allows the
author a high degree of originality but the fact remains that the
number of interpretations of the requirement may then be large.

The alternative is to constrain the use of language to some
well-defined set of constructs and to force the writer to use only that
language. This will largely remove the ambiguity but will tend to
increase the volume of text required to describe a given problem.
Furthermore, the language may be constrained so that a number of
features are difficult or even impossible to describe, in which case one
particular language may not always be appropriate for a given
application. Nevertheless, the level of precision achievable with formal
specification languages far outweighs their drawbacks and their use
within software development will substantially increase in the next few
years. A number of major organisations have committed themselves to
their use even though this has required a substantial training effort.
One serious impact of their use is that all levels of the organisation,
from programmer to senior management, must understand the
technique.

The organisations which have done this have found great benefits,
not the least of which is that all levels of personnel within the
organisation are able to understand and discuss the various types of
document generated, be they detailed design documents or high level
requirements specifications.

One very important aspect of introducing such methods is to ensure
the availability of any support tools which are needed. For example, a
language syntax checker will enable specifications to be developed on
a computer, thus speeding the preparation of documents.

www.manaraa.com

An Engineering Approach to Defining Requirements 83

6.6 AVAILABLE SPECIFICATION LANGUAGES AND DESIGN
METHODOLOGIES

A number of methodologies are described in the following pages. The
first six are specification languages and Sections 6.6.7 to 6.6.13 describe
design methodologies.

SPECIFIC A TION LANGUAGES

6.6.1 IORL (Input/Output Requirements Language)
The language was developed by Teledyne Brown to allow enforcement
of a rigorous methodology for system development with the require­
ment that it should be easy to use. In particular, it was aimed at
engineers so that they could express system performance characteris­
tics and algorithms. IORL is a graphics and tabular specification
language. The highest level is the Schematic Block Diagram (SBD).
SBDs are rectangular boxes that identify all the principal system
components and the data interfaces which connect them. In IORL the
designer must maintain a distinct difference between control flow and
data flow. SBDs are decomposed into other SBDs until decomposition
is no longer feasible. Each SBD represents a different document. The
Predefined Process Diagram (PPD) is used to depict the detailed flow
logic of a single predefined process. It is used to improve the
readability of the specification, to allow identification of dependent
components and to permit the specification to be presented in a
hierarchical manner.

A CASE tool called Tags is now available which uses the IORL
requirement language to express software specifications. IORL uses
blocks and icons to create flow and timing diagrams. Parameter tables
accompany the diagrams. These specifications can be executed to
simulate the real-time operation of the software being modelled.

6.6.2 CORE (COntrolled Requirements Expression)
This is an analysis method originated by systems designers and BAe,
consisting of a set of formal techniques for gathering and structuring
requirements information. CORE is a graphical technique whose
features have been derived from other widely used specification
methods. The notation can be used both for requirements and for
design. The CORE method consists of a number of steps, each of
which must be completed for each level of decomposition. These

www.manaraa.com

84 Engineering Quality Software

stages are:

(1) Problem definition.
(2) Viewpoint analysis.
(3) Tabular collection.
(4) Data structure diagrams.
(5) Isolated viewpoint action diagrams.
(6) Combined viewpoint action diagrams.
(7) Non-functional requirements.
(8) System constraints.
(9) Completion.

The technique has been in use for some time but needs automated
support if used for large systems.

6.6.3 VDM (Vienna Development Methodology)
This stems from development carried out at IBM in Vienna by Cliff
Jones. VDM is a rigorous, mathematically based method which allows
specification to be carried out in a mathematical form. VDM provides
a formal notation and a variety of reasoning techniques suitable for
most applications.

VDM is a model based approach in which specifications are explicit
system models constructed out of either abstract or concrete primi­
tives. The model base approach is well established and has been under
development for many years.

VDM is based on the use of mathematical abstractions such as sets
and mappings. Its original use was for the formal definition of
programming languages. It has been subsequently developed and
applied to a wider set of applications such as operating systems and
databases.

VDM provides more than just a specification language. Besides a
formal notation a method should supply rules and procedures to be
followed in the various stages of system development.

VDM is model based in that descriptions of systems are given as
models. The constituents of these models are data objects which
represent the inputs, outputs and the internal state of the system, and
operations and functions which manipulate the data. VDM encourages
the top-down approach by supporting abstraction at the uppermost
levels of description. At the uppermost level of specification an
abstract model is given which captures only the system concepts
necessary to explain the required functions of the system. Data objects

www.manaraa.com

An Engineering Approach to Defining Requirements 85

are then specified using very abstract mathematical data types and the
operations and functions that manipulate them are specified implicitly
or constructively using recursive functions.

A number of types are built into VDM such as Int, the set of
integers, NatO, the set of non-negative integers and Nat the set of
positive integers. New sets of scalars can be introduced using type
definitions, for example, Colour = {Red, Green, Blue}. Types can
then be manipulated in a number of ways. Thus the declaration
Distance = NatO introduces a new name for the type NatO which would
be more meaningful. By the use of types, operations, etc. it is thus
possible to build up a specification which provides a formal definition
of the system we intend to build.

6.6.4 Z
The Z notation is a language for expressing formal specifications of
computing systems. Like VDM it is a model based approach. It is also
based on typed set theory and has the 'schema' as one of its key
features. This consists of a number of named objects with a relation­
ship specified by axioms. Z provides notations for defining schemas
and later combining them in various ways so that large specifications
can be built up in stages.

As an example of a schema, consider a database consisting of
people's names against each of which is stored a telephone number.
The state-space of the schema is described by a schema called
DBtelephone:

DBtelephone

known: P NAME
phone: NAME ~ PHONE

known = dom phone

Two components of this schema are the set of known of names
known to the database and the partial function phone which records
the telephone number against certain names.

As an example the following is a possible state of the system:

known = {Wood, Smith, Elsevier}
phone = {Wood~01-123-1234, Smith~Ol-234-2345, Elsevier~Ol-

345-3456}

www.manaraa.com

86 Engineering Quality Software

From this state-space we can then go on to describe events which
might happen.

Schemas can be used to describe all aspects of a system: the states it
can occupy, the transitions it can make and, as we transform the
specification into design, the relationship between one view of a state
and another. Like VDM, Z thus provides us with a formal means of
describing a system.

6.6.5 OBJ
OBJ is a language for writing and testing algebraic program specifica­
tions. It has seen development by teams in the USA and in Great
Britain with executable versions being implemented. The basic moti­
vation for OBJ is that experience has shown that it is difficult to
produce specifications which are error free even for relatively small
systems. OBJ provides facilities to assist the development of correct
specifications. First it allows objects to be defined which allow the
specifications to be broken down to a size which can be grasped
conceptually. Second, facilities are provided for testing these small
specifications and also to examine their interconnection. Other fea­
tures are its strong typing, the systematic use of error conditions and
of syntactic and semantic consistency checks. In some respects OBJ
can be viewed as a programming language with inefficient execution.
Objects in OBJ distinguish three kinds of operator: those used in
normal situations, those used in error situations and those in recovery
situations.

6.6.6 SREM (Software Requirements Engineering
Methodology)

This was developed in the mid-1970s in the United States and its
application, to date, has been largely in military control and data
systems. It is similar to PSL/PSA (Section 6.6.12) and incorporates a
'stimulus/response' facility which permits automatic simulation to be
carried out which generates feedback information on the characteris­
tics and performance of the system being defined. The language and
graphics are:

RSL (Requirements Statement Language).
R-nets (a graphical method).

Figure 6.2 illustrates the R-nets method.

www.manaraa.com

An Engineering Approach to Defining Requirements

For Each

Subnet -

Output
intltrfaclt

__ __ R - Net Start

__ __ Input Intarfaclt

__ Validation Point

-- Alpha

Imaglt

-- Entity Sltlltction

-- -- 'And'

____ ' Considltr Or'

- - - Status

(Not Ready)

Tttrminatlt

Fig. 6.2. An example of an R-nets diagram.

87

www.manaraa.com

88 Engineering Quality Software

DESIGN METHODOLOGIES

6.6.7 MASCOT (Modular Approach to Software Construction,
Operation and Test)

This is a method (also discussed in Section 5.4.7) for the design and
implementation of real time systems. The method is widely used in the
UK defence and avionics industries and originated from work done at
RSRE. MASCOT is characterised by the use of a graphical data-flow
network as the medium for expressing software structure. It is
combined with a systematic development method which ensures that
this structure is accurately reflected in the resultant software. Inter­
process communication is handled by a special type of design element
which encapsulates the shared data storage and the access mechanisms
which implement the synchronising actions necessary to preserve the
integrity of the shared data. All the parallel processing knowledge of
the system is thus isolated from the purely algorithmic concerns dealt
with in the processes. A MASCOT application is tested and operated
in a standard context which provides a set of run-time executive-level
facilities for such purposes as process scheduling and synchronisation.

6.6.8 SSADM (Structured Systems Analysis and Design
Methodology)

This grew out of work by the UK Government's Central Computer
and Telecommunications Agency and Learmonth, Burchett Manage­
ment Services, to devise a standard software design methodology ap­
plicable to the broad scope of work performed by various government
departments.

SSADM is not a collection of techniques but a well-defined
step-by-step approach. Rather than concentrating on one approach,
such as functional analysis, SSADM regards functions and data with
equal importance. SSADM is divided into six stages:

1. Analysis. Construct a logical model of the system.
2. Specification of requirements. Document the problems of the

current system and the requirements of the new system.
3. Selection of system option. Identify and document the opera­

tional requirements of the new system.
4. Logical data design. Complete a detailed logical data design.
5. Logical process design. Complete a set of detailed logical process

designs.

www.manaraa.com

An Engineering Approach to Defining Requirements 89

6. Physical design. Translate the logical design into database or file
descriptions and the logical process designs into program
specifications.

The primary techniques used in the six stages, but not in all, are
data-flow diagrams, entity models, entity life histories, data normalisa­
tion, process outlines and physical design control. A standard set of
forms to assist in developing systems also exists. One CASE toolset
which attempts to cover a large part of SSADM is available from
LBMS and is called LSDM.

6.6.9 JSD (Jackson System Development)
The Jackson methodology is a method for specifying and implement­
ing computer systems. Within JSD there is a distinction between
specification and implementation. The development procedure has six
steps, of which four are concerned with creating a specification of the
required system and two with its implementation.

JSD approaches the problem via the idea of a model and its relation
to function. First an abstract description of the reality is written and
then one determines how that abstract description can be realised in a
computer model. In JSD the abstract description is created in two
steps, and its realisation in a third step which is the development
procedure.

It is not until the fourth step that system functions are considered.
The techniques used in implementation have a common theme in that
they allow the developer to make decisions, when the system is built,
that might not otherwise have been made until it is run.

6.6.10 SADT (Structured Analysis and Design Technique-
Ross)

This has been in use since 1974 and is a general-purpose modelling
technique which can be used to describe a range of problems not
necessarily confined to computer systems. It is a graphical language
involving top-down decomposition of complex problems into easily
perceivable elements. SADT consists of three aspects:

(1) The graphical language which communicates the requirement
(actigrams).

www.manaraa.com

90 Engineering Quality Software

(2) Methods which decompose the problem so that the graphical
language can be used to describe it.

(3) Management and human factors rules which guide and control
the above methods and diagrams.

The result is an ordered set of interrelated diagrams where each
diagram must contain three to six boxes and occupy a single page. The
number of diagrams will depend on the complexity of the problem and
they will be connected by upwards and downwards referencing in a
logical hierarchical structure. A top-down overview diagram will precis
the total problem.

Diagrams consist only of boxes, arrows and text. Arrows represent
relationships between boxes and should not be confused with data-flow
or sequence arrows in other types of diagram. Figure 6.3 shows (a) an
overview structure and (b) a single diagram (actigram).

6.6.11 SSA (Structured System Analysis-De Marco)
This also dates from the 1970s and is finding much application in data
processing. Top-down and graphical techniques make it fairly similar
to SADT but it incorporates some additional data base features. These

--+--

t t
(al Overview

r

~ +

(b) .Actigram

Fig. 6.3.

www.manaraa.com

An Engineering Approach to Defining Requirements

are:

Data flow diagrams.
Data dictionaries.
Process logic diagrams.
Data structures.

91

A standard data dictionary is used to define the various data elements
in the requirements. The diagrammatic logic for describing the
problem includes decision trees and decision tables. SSA is, hence,
applicable to data processing systems and real time problems with
substantial data flow and manipulation.

6.6.12 PSL/PSA (Problem Statement Language/ Analyser)
This is a language originating in the mid-1970s. It was developed
specifically for expressing requirements specifications. It is automated
and can, to some extent, reveal gaps in the information flow or the
existence of unused data. The three features are:

The information is in a computerised data base.
Processing is by computer.
The emphasis is on what, not how.

6.6.13 Petri-nets
This technique has evolved over the last ten years as a method for
describing real time systems. The elements of a net are:

Token types which specify each type of information.
Places.
Transitions.
Arcs.
Initial marking.

The important feature is the translator which converts the Petri-net
into a program structure such as Ada (see Chapter 9).

6.6.14 Object Oriented Design
In object oriented design, the software components are seen as objects
rather than as functions. Each object has an associated set of
permitted operations and objects communicate by passing a message
where the message usually includes an instruction to activate a

www.manaraa.com

92 Engineering Quality Software

particular function. OOD is founded on the principle of information
hiding and on abstract data types and although it is relatively
undeveloped at present it is likely to gain importance in parallel with
the increase in use of the Ada language, Ada being founded on similar
principles.

6.7 FUTURE TRENDS AND GOALS

One of the characteristics of the methodologies is that, in the past,
they have been 'pencil and paper' techniques. More recently several of
the techniques have begun to appear in automated form which allow
the designer to manipulate diagrams on a workstation. These systems
usually have, at their core, a data base or data dictionary which allows
the designer to keep track of the various entities which he has created.
The automation of design methodologies is a major step forward since
it removes much of the drudgery in creating the diagrammatic
requirements of each.

Will eventually
be automated

SPECIFICATION

CORRECTNESS
-CURRENTLY MANUAL

L..----_---I -BEING AUTOMATED

______ Requires Static Analysis
untiL ... ~ ... becomes
automatic

TEST
SPECIFICATION

Fig. 6.4.

www.manaraa.com

An Engineering Approach to Defining Requirements 93

At the outset, specification techniques have been based on computer
systems since it was recognised early that the high level of checking
necessary in specifications could only be performed in that way.

The main tasks confronting the software industry today are specifi­
cation techniques and the 'wrapping up' of the whole life-cycle into a
largely automated system so that self-checking for consistency, com­
pleteness and so on can be left to the computer. A number of projects
are running which will achieve this goal in the near future. Figure 6.4
illustrates this view of the design-cycle.

A great deal of work is also in progress on a variety of analysis
systems which provide some degree of proof of correctness.

www.manaraa.com

Chapter 7

Putting Design into an Engineering Context

7.1 VERIFICATION AND VALIDATION

Verification and validation are often confused and it is worthwhile
discussing them again in the context of Fig. 1.2 of Chapter 1. There
are two ways of looking at the definition of verification and validation.
The more formal definitions are:

Verification: The process of ensuring that the result of a particular
phase meets the requirements of the previous phase.

Validation: The process of ensuring that the results of the whole
project meet the original requirements.

However, shorter definitions are sometimes used, one in particular
by Boehm:

Verification: 'Have we built the product right?'
Validation: 'Have we built the right product?,

In the first case the emphasis is on the product for its own sake and
clearly implies a process of continuous checking throughout develop­
ment. Validation, on the other hand, requires the existence of a
completed product in order that one may ask 'Have we met the
customer's requirements?' Contrast this with the verification question
'Have we met the requirements of the previous phase?' (of the
design).

7.2 THE DESIGN PROCESS

Let us take a closer look at the design-cycle, with particular attention
to the need for verification at each stage. Figure 7.1 is a breakdown of
the design stages following from the user requirement specification.

94

www.manaraa.com

Putting Design into an Engineering Context

Technical
Specification

\
Design Review

I
'-----r----J~

Programming
Standards -.. '------".-I

\
Validate

Fig. 7.1. The design-cycle.

Test

95

It may seem strange that the requirements phase is included under
the heading of design-cycle. There is a great deal of evidence that
keeping design out of the requirements phase achieves a clearer
specification of 'what is required' rather than allowing pre-conception
of 'how to implement' to cloud the issue. Nevertheless it often
happens that the implementation phase reveals features of the system
which result in changes to the requirements. Thus to exclude the
requirements phase from the design-cycle would be unrealistic.

Many different ways of viewing the design process have evolved

www.manaraa.com

96 Engineering Quality Software

using a variety of different ways of 'viewing' the system. Some of these
'views' have already been described in Chapter 6. Normally the first
stage of the design process is to identify functions, namely those
aspects which are extemaliy apparent to the system user.

This is clearly a difficult stage since the system developer, from the
requirements, has to decide on the way in which the system will
appear to the user. To decide, from requirements, all the operational
characteristics is at best extremely difficult. Having achieved that aim,
however, the system designer has a firm foundation on which to base
his design decisions in developing a system which responds in the
manner required. By moulding functions and data he is able to
decompose the system to the point at which the programmer can
perceive all the functions required at a particular module and thus will
be able to control its consturction more efficiently. Iteration back
through previous stages allows the design to be refined and then
validation provides the confidence that the system produced is correct.

7.3 PROGRAMMING STANDARDS

In Section 4.5 the use of programming standards was introduced by
describing structured programming and outlining some types of design
diagram. The use of programming standards in design projects,
although on the increase, is by no means as common as it should be.
Programming standards range from a simple statement of layout and
presentation of code to sophisticated guides covering many aspects of
design and coding. Ideally, in large development projects, there
should be a Company programming standard which is used as a
template for the production of project-specific standards. Thus, at the
beginning of each project, the software manager prepares a set of
documentation and programming standards. These might consist of
the following standards.

7.3.1 Module Specification Standard
It will describe the purpose of a module specification by delineating
the need for a subset of requirements which are to be performed by
that module.

It will state the areas of performance criteria which the designer
must address when preparing the specification (e.g. response times,
arithmetical accuracy, processing priority, data flow to and from other
modules, degraded performance criteria under overload conditions).

www.manaraa.com

Putting Design into an Engineering Context 97

It will state the need to specify the module interfaces and the data
bases to be accessed.

Depending on the project, and the high level language to be used,
pseudo code, decision tables, flowcharts and state diagrams may be
used and the standard will discuss the techniques to be employed.

It will also require the designer to include, in the module specifica­
tion, an estimate of the quantity of code and, if critical, the execution
time.

Requirements for project-specific documentation numbering, rela­
tive to other specifications, will be included, as will formats for layout
and legibility of the specification.

7.3.2 Module Definition (Documentation and Code Package)
Standard

This consists of the package of work papers which actually constitute
the software module. It includes:

The module specification.
The listing of code.
The test definition.
The test results.
Notes.

At a lower level of detail the standard will list the contents of the
module definition package and the requirements for outward referenc­
ing to other specifications. It will require the following to be included:

(a) Files belonging to the module.
(b) Files accessed by the module.
(c) Complementary explanation to enhance the code. This should

not detract from the requirement that code should contain
adequate comment.

(d) Diagrams to describe data flow, flowcharts, etc., as applicable.
(e) Timing calculations (e.g. execution, disc access, CPU time).
(f) Notes of any compiler problems.
(g) Error-handling philosophy.
(h) Test requirements (e.g. harnesses, simulators, hardware).
(i) Inspection/walkthrough records.
(j) Modifications.

Again it will state the documentation numbering conventions for the
project and will give rules for format and legibility.

The test description is part of the module definition package and will

www.manaraa.com

98 Engineering Quality Software

include a requirement for the following to be described:

The item to be tested.
The tests to be carried out.
The hardware required.
The test results.
A summary of the results.
A summary of the errors.
A summary of any modifications.
Diagnostic details as they arise from the debug process.

7.3.3 Software Coding Standard
In addition to the module definition standard, a software programming
standard will extend to the actual production of code. Thus, con­
straints and guidance are extended to the very bottom of the design
hierarchy.

In the ideal case of a project specific standard the following will be
included:

(a) A description of the computing environment including the
operating system.

(b) The language and compiler (including version number).
(c) Details of compiler evaluation (see Chapter 9).
(d) Conditions under which the use of machine code is permitted

(e.g. time-critical functions).
(e) Editing facilities.
(f) Rules for limiting the use of globals.
(g) The precise meaning of such terms as module, subsystem and

routine and their functional boundaries.
(h) Header contents (e.g. name, date, issue, author, amendment

history, calling sequence of module, synopsis of module, input
and output parameters, data and globals accessed, messages
passed to and received by the module, etc.).

(i) General advice on coding strategy.
(j) Rules for layout of the block structure and conventions for use

of upper and lower case type (see Fig. 7.2). This includes the
use of spaces, indented nesting, pagination, etc.

(k) Rules for the use of specific commands (e.g. limit on use of
GOTO, use of simple IF conditions, absence of dangling
THEN or ELSE commands).

www.manaraa.com

Putting Design into an Engineering Context 99

(1) Rules within loops (e.g. entry, exit, forbidden commands
within the loop).

(m) Code template examples for regularly used sections of code
(see Fig. 7.3).

(n) Algebraic rules (e.g. the ambiguous AlB * C rather than
A/(B*C».

(0) Naming conventions referenced to the technical specification.

BEGIN
WHILE NOT KEY DO

IF ENTRY ALLOWED THEN
BEGIN

END;

FOR i: = 1 to n do
CHECK (ACCESS, i, RESULT);
IF RESULT DOES NOT = TRUE THEN
ERROR EXIT ELSE
SET ACCESS;

IF ENTRY DENIED THEN
BEGIN

REPORT ENTRY (ACCESS-CODE, CODE);
RAISE ALARM (CODE);
IF TIME> 18 THEN
BEGIN

END;

REMOTE DIAL (CODE);
LOCK ALL;

END;
END-DO;

Fig. 7.2. Sample of block structured code.

Package OUEUE is
type a is limited private
procedure ADD (PO: in out a; X: in INTEGER);
procedure REMOVE (PO: in out a; X: out INTEGER);
function EMPTY (PO: in a) return BOOLEAN:

private
O-S: constant: = 100;
type INTV is

array (INTEGER range < » of INTEGER;
type a is record

a-VEL: INTV (1 .. O-S);
FRONT: INTEGER range O .. O-S: = 0;
BACK: INTEGER range O .. O-S: = 0;

end record;
end OUEUE:

Fig. 7.3. A code template. This template has an Ada package header
which makes it available for use as a template outside the package.

www.manaraa.com

100 Engineering Quality Software

(p) Advice on commenting and spacing as an integral part of the
code which should describe rather than reproduce it.

(q) Rules for subroutines relating to single entry and exit at top
and bottom.

(r) Specific rules on the use of GOTO, such as obtaining project
authorisation, forward branching, commented destination.

(s) Error return conventions.
(t) Language facilities not to be used.
(u) Exception handling rules.

7.4 DESIGN REVIEW-OBTAINING VISIBILITY

We have emphasised, many times, the problem of visibility due to the
intangibility of software. It is well proven that design reviews are
capable of identifying a substantial number of faults, thereby improv­
ing the quality of software. The features of a design review should
therefore be geared to:

(a) Making the design visible.
(b) Providing a means of tracing the requirement through the

specifications and design.
(c) Measuring the functions against the requirement.
(d) Identifying faults.
In other words, design review must provide a feedback loop

verifying each stage where it is applied in order to judge the adequacy
and completeness of the design and thus provide confidence to
proceed to the next level of design (Fig. 7.4).

This process cannot be left to chance or to the whim of designers, so
there is a need for these design reviews to be a formal Company
requirement in order to demonstrate commitment. Procedures should
identify:

(1) Which design stages will be subject to review.
(2) The participants and the person with overall responsibility.
(3) Details of records to be kept and rules for the control of

follow-up actions.
(4) Rules for review of follow-up actions.
(5) Checklists for guidance-see the end of this chapter for a

sample.
(6) Preparations to be made in advance of each design review

(documentation, etc.).

www.manaraa.com

Putting Design into an Engineering Context

DESIGN REVIEW

Viewpoints

Management User I Developer

~~~--~~-----~ 

Does the level of information 
meet the contractor requirements? 

Fig. 7.4 

Does it contain the data to 
proceed to the next stage? 

101 

It is important that the details of design reviews are adequately 
recorded. For example, the designer's development notebook provides 
a means of recording the faults found and the results of the 
modifications which followed. Additionally, some form of minutes will 
be necessary as a record of who was involved and what actions were 
agreed beyond the technical details recorded in the notebooks. 
Without such records the quality audit activity (Section 11.3) will have 
no evidence from which to measure the effectiveness of the design 
review process. 

In Fig. 7.1, the loops shown as 'Design Review', 'Validate' and 
'Test' are all reviews of the product against specific criteria which may 
consist of one or more of the following: 

Conformance to documentation and programming standards. 
Overall feasibility. 
Technical conformance to a previous stage of specification or 
requirement. 
Efficiency of the design in the sense of testability, size, timing, etc. 

There are two levels of review. 
At the module level the less formal review may involve only 

members of the design team and might be implemented as an ongoing 
project activity. A log will be kept either by way of the notebook or by 
adding notes to the module definition papers. Persons involved in this 
type of review include peers of the designer and other members of the 
team. 

At a more formal level, planned design reviews at specific mile­
stones will involve persons from outside as well as inside the design 



www.manaraa.com

102 Engineering Quality Software 

team. These will be scheduled as major project activities at defined 
points in the development cycle as, for example: 

After production of the functional specification. 
After production of defined module definitions. 
After coding and test of defined modules. 
At various milestones during test and integration. 

This type of review will be more objective but, by its nature, requires 
more preparation and hence involves more time and cost. Persons 
involved include peers, team members, members of other teams, and 
external experts. The functions of the various participants in a 
software design review are: 

Chairman. Calls and conducts the review and issues reports. 
Product designer. Presents the design. Carries out calculations and 

provides justifications. 
Independent designer. Gives objective views on the design. 
Consultant. Gives objective views on the design and on costs. 
Customer (optional). Gives opinions as to the degree to which the 

design meets the requirements. 
Software quality engineer. Ensures that the test requirements can be 

met. 
Field. Ensures operating and maintenance requirements are met. 

Where design reviews involve coded modules, various techniques 
for examining and comparing the code with the requirement can be 
applied. These are described in the next section and include: 

Peer review. 
Code inspection. 
Structured walkthrough. 

7.5 REVIEWS, INSPECTIONS AND WALKTHROUGHS 

These three techniques, which can be considered together, provide a 
very powerful trio which can efficiently and economically be applied to 
any software development programme. They provide: 

Low level verification. 
Checks against standards. 
Enhanced communication between team members. 
Improved quality. 
Reduced compile/debug iterations. 



www.manaraa.com

Putting Design into an Engineering Context 103 

7.5.1 Reviews 
Reviews form one of the most effective means of producing error-free 
software. Whilst the term 'review' may seem weak, properly applied 
they can detect at specification and design, faults which, if left until 
later in the life-cycle, will cost many times more to correct. At 
requirements or overall design level a review might involve many 
members of a project team. They should, ideally, be drawn from as 
many different aspects of the project as is possible, not just from the 
design team but also from test, quality assurance (QA) and manage­
ment. In this way as many viewpoints as possible are gathered. A 
typical review life-cycle is the following. The author or authors ensure 
that the document is acceptable for review. If so, then it is circulated 
for comment. It is essential at this stage that those commenting on the 
document are given both the time necessary for them to provide 
comments and are provided with the terms of reference of the review. 
This ensures that the specific or general aspects which are required to 
be reviewed are given the attention necessary. The author then 
considers the comments prior to a review meeting. It is useful to 
classify them in some way, e.g., as accepted, not accepted, etc. In this 
way those accepted comments need not be discussed at the review 
meeting. Those comments not accepted are discussed with a view to 
resolving them. It is important that only the issues raised are resolved 
and that no attempt is made to re-design the system. 

The review process can thus be an effective method of finding and 
correcting faults and also ensuring that problems do not get into the 
implementation. 

7.5.2 Inspections 
An inspection is a more formal method of review with the restriction 
that the aim is to find faults not to rectify them within the meeting. 
The technique was originally devised by Fagan at IBM and has proved 
to be an effective technique for the design, code and test phases. 
Provided the inspection is done carefully and data collected correctly it 
is possible to gather trend data from inspections which yield useful 
management information. It is important that inspections are managed 
properly in the sense that moderators who control the inspection 
process and inspectors who participate in the inspection are trained 
and know what is to be expected. It is too easy to allow an inspection 
to become a review and thus dilute the benefits of an inspection 
without achieving those of a review. 



www.manaraa.com

104 Engineering Quality Software 

7.5.3 Walkthroughs 
There are several types of walkthrough, some applying only to code, 
others to design. At the simplest level a walkthrough might perform a 
simple verification of code and also check adherence to standards. At 
a more complicated level it might be applied to a design in the sense 
that the design is 'walked-through' to test its adequacy. One of the 
most effective methods is that proposed by Y ourdon related to the 
structured methodology bearing his name. As with all the techniques 

AB/089 BL1 BL2 BL3 BL4 BL5 BL6 

Requirements Spec. 100 1·0 2·0 2·0 2·0 2·0 2·0 

Functional Spec 200 1·0 2·0 2·1 2·1 2·1 2·1 

Hardware Tech Spec 300 1·0 2·0 2·0 2·0 2·0 

Software Tech Spec 400 1·0 2·0 2·0 2·0 2·0 

Subsystems-SUPYS 410 1·0 2·0 2·0 
INIT 420 1·0 2·0 2·0 
FULLCHECK 430 1·0 2·0 2·0 
DOFOREVER 440 1·0 2·0 2·0 

Modules- ADDRESS 441 1·0 2·0 2·0 
DETDIAG 442 '·0 2·0 2·0 
DETFIRE 443 '·0 2·0 2·0 
CLOCK 444 '·0 2·0 2·0 
DISPSTAT 445 '·0 2·0 2·0 
CHKKEY 446 '·0 2·0 2·0 
REPORT 447 '·0 2·0 2·0 

Quality Plan 900 '·0 2·0 2·0 2·0 2·0 2·0 

TestSpecs- MOTHER Bd 91' '·0 2·0 
CPU Bd 912 1·0 2·0 
I/O 913 1·0 2·0 
COMMS 914 '·0 2·0 
PSU 915 1·0 2·0 
I/O CPU 921 1·0 2·0 
COMMS/CPU 922 1·0 2·0 
FUNCTIONAL 931 1·0 2·0 
I/O LOAD 932 ',0 2·0 
MARGINAL 933 '·0 2·0 
MISUSE 934 '·0 2·0 
ENVIRONMENT 935 1·0 2·0 

EPROM-XYZ '·0 

PROM-ABC 1·0 

Fig. 7.5. Document Master Index. 



www.manaraa.com

Putting Design into an Engineering Context 105 

in this section it is important that complete records are retained for 
future reference. It is often found that in later development stages it is 
necessary to refer back to records of walkthroughs to try and track a 
fault. 

7.6 Configuration Management 
Although an overview of configuration management has already been 
given in Section 4.4 it is worth introducing it at this point in order that 
its context in design is appreciated. 

When developing the design of any system it is vital that a baseline 
is set at various stages in order that stability is introduced into the 
process of design. It is otherwise too easy to allow the creative element 
in the design process to take over and all control over design is lost. 
Configuration management plays a vital role in this because it allows 
control to be exercised over these various baselines and the changes 
which are made to them. Whilst it is possible to perform this task 
manually it is better done automatically. Several tools are available 
which assist in the management of not just source and object code but 
also documents and information relating to them. The essence of these 
tools is that they provide for limited access to the objects under 
control and thus maintain control of the items under configuration 
control. In this way complete visibility of any changes to baselines, 
e.g., design baselines, are maintained. 

Figure 7.5 shows a typical Master Index which describes the 
baselines (up to Baseline 6) of the case study in Chapter 14. 

7.7 FORMAL VERIFICATION 

The idea of formal verification goes back many years to the early 
attempts at correctness proving in programs. The principle is to show 
that a program as written implies its specification. 

Practical tools for formal verification have only recently become 
available. The appearance of MALPAS and SPADE (see Section 8.7) 
now provides developers with the means of formal static analysis and 
hence formal verification. The principle behind both tools is that of 
directed graphs and regular algebras. Basically a program is first 
modelled in terms of an intermediate language. This intermediate 
language is strongly typed (see Chapter 9) with simple constructs. The 
program, thus modelled, is first represented as a directed graph and 



www.manaraa.com

106 Engineering Quality Software 

then, after reduction to a minimal form, as a regular algebraic 
expression. Once in this form rigorous mathematical theory can be 
used to reveal information about the structure and function of the 
program. 

There have been many attempts at formal verification of programs, 
most notably in the avionic field. In the case of software controlling 
aircraft systems it is clearly vital that the greatest confidence is 
established in the software. For this reason the developers of avionic 
systems have paid particular attention to the methods available for 
thorough software testing and, in the USA, work has been carried out 
on formal verification of flight software. 

The whole area of software in safety-critical systems is one which is 
receiving particular attention and current trends are tending towards 
greater use of formal verification via such tools as MALP AS and 
SPADE. 

CHECKLIST 7.1: DESIGN REVIEW 

(1) Are all the operating cases and environments which the system 
will meet specified? 

(2) Are all safety constraints identified and specified? 
(3) How will system performance be perceived by individuals who 

come into contact wi,th it? 
(4) How will the system react to low probability events or failures in 

its environment? 
(5) Is the system identified as modules and are their requirements 

listed? 
(6) Has a failure mode analysis of each module been carried out? 
(7) Have all the relevant documents been made available for the 

review? 
(8) Do standards exist for the numbering and naming of documents 

such that adequate design and configuration control can be 
exercised? 

(9) Is the software requirement adequately expressed through a 
specification? 

(to) Is the software specification complete, consistent, unambiguous 
and perceivable? 



www.manaraa.com

Putting Design into an Engineering Context 107 

(11) Is there traceability of the requirements through the 
specifications? 
(12) What would be the effect of a major change in the system 
requirements, interfaces, hardware or their availability? 
(13) Have software quality aUditing procedures been included in the 
quality plan? 
(14) What automatic software analysis aids are to be used in the 
reviews and tests? 
(15) Have internal and external system interfaces been defined? 
(16) Are there specific design areas (e.g. processor speed, new 
algorithms, security) which create new difficulties? 
(17) Will the design be easily built-is the integration plan feasible? 
(18) Does the system integrity depend upon diversity and how is this 
implemented? 
(19) Is progress to plan or is there evidence of repeated slippage? 
(20) Have adequate budgets for CPU, memory, I/O channels, timing, 
etc. , been established in the light of the system response 
requirements? 
(21) Is the software design adequately expanded into functional and 
operational flows and data definitions? 
(22) Are macros, tables and templates adequately defined? 
(23) Are any design features proving resource-critical? 
(24) Are any automatic validation tools being used? If so does the 
predicted performance meet the requirements? 
(25) Is there adequate provision for instrumentation for data gather­
ing, debugging, integration and maintenance? 
(26) Have all approved specification changes been integrated into the 
design? 
(27) Have all operator interfaces been defined and are they appropri­
ate to the operator capabilities and the manuals? 
(28) Is subcontracted software proving adequate? 
(29) Are there adequate provisions for software storage and security, 
including both media and documents? 
(30) Does the test and integration specification map completely on to 
the requirements? Are there suitable cross-reference matrices for 
this purpose? 
(31) Has adequate testing been carried out in the light of changes? 
(32) Has there been analysis and interpretation of errors? 
(33) Have outstanding actions from previous reviews been actioned? 



www.manaraa.com

108 Engineering Quality Software 

CHECKLIST 7.2: CODE INSPECTIONS AND WALKTHROUGHS 

This checklist can be applied to each module of code inspected. 
Alternatively, evidence of vendor code inspection to similar criteria 
will be sought. 
(1) Are all constants defined? 
(2) Are all unique values explicitly tested on input parameters? 
(3) Are values stored after they are calculated? 
(4) Are all checked defaults explicitly tested on input parameters? 
(5) If character strings are created are they complete? Are all 

delimiters shown? 
(6) If a parameter has many unique values, are they all checked? 
(7) Are registers restored on exits from interrupts? 
(8) Should any register's contents be retained when re-using that 

register? 
(9) Are all incremental counts properly initialised (0 or I)? 

(10) Are absolute addresses avoided where there should be symbolics 
as, for example, in the use of an exact location instead of 
memory mapping? 

(11) Are internal variable names unique or confusing if concatenated? 
(12) Are all blocks of code necessary or are they extraneous (e.g. test 

code)? 
(13) Are there combinations of input parameters which could cause a 

malfunction? 
(14) Can interrupts cause data corruption? 
(15) Is there adequate commentary in the listings? 
(16) Are there time or cycle limitations placed on infinite loops? 
(17) What is the program response to unacceptable inputs? 
(18) Are data structures protected, or can they be accessed from many 

points? 
(19) In accessing arrays, does the program start at the first element 

and finish at the last? 
(20) Are empty character strings treated? 
(21) Is the zero case taken into account in calculations? 
(22) Do all loops terminate and if so, how? 



www.manaraa.com

Chapter 8 

A Structured Approach to Static and 
Dynamic Testing 

8.1 LIMITATIONS OF TEST 

The main limitation to software testing is the inability to foresee all the 
combinations of external conditions and logic states in the program. If 
we could know the answers before writing the test procedures then the 
problem would not exist. No test can ever prove a practical piece of 
software to be error-free. In fact, the largest program to be so proved 
was 1600 lines and the activity involved a three-year Ph.D. Timing­
related faults prove the most difficult to reveal. Alas, this is the real 
world and therefore the problem of test planning must be addressed as 
thoroughly as possible. 

Practical test limitations include: 

(a) The range of test conditions and loads which can be applied. It 
may only be possible to apply environmental conditions in­
dividually or in a limited number of combinations. This limita­
tion may also apply to the loading of inputs which will depend 
on the test equipment and simulators provided. 

(b) The range of operator actions which can be foreseen and 
planned for in the test procedure. These should include misuse 
tests but they will be limited by the imagination of the test 
writer. 

( c) The extent of the operating instructions. 
(d) The choice of language and compiler which will have an effect 

on the difficulties actually experienced during testing. 

Management constraints of time and cost will also limit the test 
effectiveness. Since testing, however soon it commences, is the last 

109 



www.manaraa.com

110 Engineering Quality Software 

activity before despatch, and since schedules always slip, then it will be 
the activity most likely to be curtailed in favour of delivery. 

Be most suspicious of repeated slippage during a test programme. It 
is invariably a symptom that each test procedure is revealing a large 
number of bugs which require extensive rework, that is to say 
redesign. It is unlikely that each test procedure will have been rerun, 
in which case additional faults are likely to exist, partly as a 
consequence of the rework, and partly since they may have been 
masked by those faults which were revealed. 

The practice of pouring in additional manpower to recover the 
schedule is ineffective. In fact, the further division of labour will be 
most likely to slow down the project. 

8.2 AN OVERVIEW OF TEST STRATEGY 

Test is usually thought of as the activity of checking the various 
functions whilst executing the code. In fact that is only one aspect of 
test and is known as dynamic testing. There are four levels of test: 

8.2.1 Code Inspection and Walkthrough 
This is the weakest level of test and has already been dealt with in 
Section 7.5. It is subjective and relies on the application of past 
experience to the review of code. Experience may be consolidated, 
continuously updated and then formalised by the production of fault 
dictionaries and checklists. 

8.2.2 Symbolic Evaluation 
A path is followed through the code and the effect of various inputs on 
the corresponding outputs is tested. This is a low level parametric test 
which validates the performance of the code in respect of particular 
variables rather than addressing the functional specification. 

8.2.3 Static Analysis 
These are tests which do not actually execute the program but examine 
the logic and paths within it. To some extent a compiler performs a 
static test by checking for syntax errors and undeclared variables. 

Static analysers examine the code algebraically without the use of 
actual input and output data values. The tools described in Section 8.3 
fall into this category. They are extremely powerful since they permit 
theoretical checking of the code for all ranges of input conditions. To 
some extent, therefore, the limitations of dynamic testing, where all 
possible paths cannot be checked, can be overcome. 



www.manaraa.com

A Structured Approach to Static and Dynamic Testing 111 

8.2.4 Dynamic Analysis 
In this type of testing 'live' data is used to exercise the inputs and 
outputs and thus test the actual performance of the code. 

These are tests which rely on executing the program either with 
simulated or real inputs. These include all forms of functional program 
testing such as: 

Stress tests. Stress tests (sometimes called endurance tests) are black 
box tests which impose a range of abnormal and illegal input 
conditions so as to stress the capabilities of the software. Input data 
volume and rate, processing time, utilisation of data and memory are 
all tested beyond the design capability. The length and depth of the 
test will depend on the complexity of the product. 

Environmental tests. These will also include tests under conditions 
of electromagnetic interference. Software systems are particularly 
prone to data corruption resulting from both mains- and air-borne 
interference and thorough functional tests are needed. Only real 
functional tests, using the finished hardware, are valid since the effects 
are hardware-dependent although it is the software which is affected. 
Some would argue that electromagnetic interference is a 'hardware' 
phenomenon but it is better mentioned here than ignored. 

8.3 STATIC ANAL YSERS 

Static analysis packages are tests which assess the structure of a 
program. They operate at source code level and verify that the 
program is correct against its specification. 

Furthermore they validate the program algebraically. Take the 
following example: 

BEGIN 
INTEGER A, B, C, D, E 
A:=O 

NEXT: INPUT C; 
IF C < 0 THEN GOTO EXIT: 
B: =B+C 
D:=B/A 
GOTONEXT: 
PRINT B, D; 

EXIT: END; 



www.manaraa.com

112 Engineering Quality Software 

A static analyser will detect that: 

(a) D is not initialised before use. 
(b) E is never used. 
( c) A is zero and is used as a divisor. 
(d) PRINT B, D; command is never used because of its preceding 

statement. 

A number of analysis suites are currently being developed. The 
most complete at the time of writing are MALP AS (MALvern 
Program Analysis Suite) and SPADE (Southampton Program Analysis 
Development Environment). A further package, TESTBED, uses 
static analysis to enable more 'intelligent' dynamic testing to be 
performed. 

8.3.1 MALPAS 
MALP AS was developed by RSRE at Malvern and is currently 
supplied by Rex Thompson and Partners, Farnham, Surrey. Figure 8.1 
is a graphical representation of its structure. 

MALPAS consists of six main analysers, each of which investigates 
different aspects of a program. The analysers may be run separately 
but in practice they are used together and run sequentially so that each 
successive analyser gives more detailed information about the pro­
gram. The main analysers are: 

Intermediate language. A translator which models the source code 
into a form which can be analysed by MALPAS. The appropriate 
translation is needed to apply MALP AS to the source code in 
question. 

Control flow analyser. This identifies all possible starts and ends, 
unreachable code and 'black holes'. It gives an initial 'feel' for the 
quality of the program. If this is not good then there is every 
likelihood that subsequent analysis will not result in a good program. 

Data use analyser. This identifies all the inputs and outputs and 
checks that data is not being incorrectly handled (e.g. read before it 
has been written). 

Information flow analyser. Outputs are analysed to describe which 
inputs they depend on (e.g. output Z depends on inputs A, B, C). 

Partial program generator. This extracts subprograms which cater 
for particular variables of interest. This helps to reduce complexity. 
These subprograms can then be submitted to the semantic analyser. 



www.manaraa.com

A Structured Approach to Static and Dynamic Testing 113 

USER PROGRAM 

CONTROL FLOW - ur- PARTIAL PROGRAM 

ANALYSER 
GENERATOR 

lSOURCE CODE TRANSLATOR 

~LAAS ~ 
ANALYSERS I 

DATA USE ANALYSER r- SEMANTIC ANALYSER 

INFORMATION FLOW - COMPLIANCE ANALYSER 

ANALYSER 

-~ 
Fig. 8.1. MALPAS. 

Semantic analyser. This provides the functional relationships be­
tween variables (e.g. P depends on A * Bsq + C). It identifies what the 
program is doing for each path and thus provides a means of assessing 
whether the program meets the specification. 

Compliance analyser. This takes the output from the semantic 
analyser and compares it with an embedded specification. For ex­
ample, if X must be in the range - 3 to +90, the analyser tests to see if 
the condition is met, in the program. 

MALP AS is used on software source code but prior to analysis it is 
necessary to translate the source code into an intermediate language 
(IL) which MALPAS can read. This obviates the need for a different 
version of MALPAS to be written for each programming language. 
The translation of the source code into IL is possible for virtually any 



www.manaraa.com

114 Engineering Quality Software 

high or low level language and may be performed either by hand or by 
use of an automatic translator, a number of which are in existence for 
a variety of high and low level languages. At the time of writing, 
CORAL 66, Pascal, PL/M-86, 8086 and MAVIS (for VIPER see 
Section 10.6) translators are available. 

The following example is reproduced by kind permission of RTP 
Software Ltd, 'Newnhams', West Street, Farnham, Surrey. It is more 
instructive than a theoretical description of each of the analysers. 

MALPAS example 
This example is a short program intended to control the water cooling 
system of a motor car fitted with a thermostat and an electric fan. The 
MALP AS outputs are listed at the end of this Chapter and are 
numbered MALPAS 1 to MALPAS 14. The specification for the 
program is: 

'The thermostat aperture should be closed at a water temperature of 
83°C ('tempclose') and fully open at 96°C ('tempopen') and should 
open linearly between the two temperatures. 

The fan should turn on at 95°C ('tempon') and off at 86°C 
('tempoff). It is intended that the program should positively switch the 
fan on or off in order to prevent partial switching (e.g. negative 
voltages) which may damage the unit.' 

The program has been coded in CORAL 66 and a listing of the source 
code is shown in MALPAS 1. Although the program is valid CORAL, 
it is not intended as an example of good coding practice and the 
unstructured use of GOTO statements within such software is not 
recommended if it can be avoided. A procedure has been introduced 
into this example to illustrate how MALPAS deals with procedures. 

Intermediate language translation 
CORAL 66 can be automatically translated into the MALPAS 
intermediate language (IL) by using a CORAL 66 translator and the 
IL version of the code appears in MALPAS 2. 

The IL code consists of two sections, the first of these containing 
declarations and the second section being the actual program which 
appears after the MAIN statement. 

Variables and constants are declared in a similar manner to CORAL 
66 and, if required, original functions or new operators may also be 
defined before the main section of the code. The declarations section 



www.manaraa.com

A Structured Approach to Static and Dynamic Testing 115 

also contains a PROCSPEC for each procedure called within the 
program. Each PROCSPEC contains a list of parameters passed to 
and from the procedure and an optional DERIVES list which defines, 
in a simple form, the relationship between procedure inputs and 
outputs. Hence, when MALP AS analyses the program, it analyses the 
procedure separately (using the procedure body) but substitutes only 
the DERIVES list relationships into the code whenever the procedure 
is called instead of expanding out the procedure each time. The 
advantage of this approach is firstly that the analysis of the program is 
considerably simplified if the procedure is long. Secondly, top­
down or bottom-up analyses of programs can be performed by 
representing each module or level of the program by a series of 
procedures so that the code can then be analysed in a single stage. 

The IL code in the program section is fairly straightforward and 
each line consists of an optional line number, the IL code and an 
optional comment (in square brackets). Within the IL code variables 
appear in lower case and language words such as IF and GOTO are 
written in upper case. With the introduction of MALPAS Release 4.0, 
the IL now incorporates a range of high level language constructs such 
as loops, blocks and nested and cascaded conditionals. These con­
structs considerably ease translation from high level languages whilst 
still permitting straightforward translation from low level languages. 
Procedure bodies usually appear after the main program section if the 
user wishes them to be analysed. In this example the procedure 
'hotorcold' has been included in the program section; however, since it 
is only two lines long, the subsequent analysis of the procedure body is 
extremely trivial and is not discussed in the rest of this note. 

The first action of the MALP AS IL Reader is to label the beginning 
and end of the program and number the lines of code that do not 
already possess line numbers. As can be seen in MALPAS 3, these 
new numbers appear preceded with a # sign. The IL Reader also 
produces a set of optional statistics relating to the program, detailing 
items such as numbers of nodes and variables. However, for simplicity 
these are not shown here. A useful feature of the IL Reader is the 
derivation of a procedure call-graph which identifies the names and 
locations of all procedures called within the program. In this example 
the call-graph is simple (MALPAS 4) since there is only one procedure 
but on more complex programs this feature can be of enormous 
benefit in providing an overview of the calling structure of the 
program. 



www.manaraa.com

116 Engineering Quality Software 

Control flow analyser 
The control flow analyser examines the structure of the program to 
identify all program entry and exit points, all loops and any multiple 
entry or exit points that they contain. Ideally, in high integrity 
software, both the program and all loops should have single entry and 
exit points so that if MALP AS identifies multiple entries and exits 
during code development the programmer will be alerted to such 
undesirable features which can then be removed. The Control Flow 
Analyser also reveals more serious errors within the program such as 
unreachable code, false entry points or dynamic halts. The analyser 
reveals the graphical structure of the code by representing the program 
as a series of arcs between nodes and it then performs a number of 
reductions on this graph until the program is finally reduced to its 
simplest form. 

Due to the use of the GOTO statements in this example the 
structure of the code is relatively complex for such a short program 
and after the first stage of reduction (ONE-ONE) there are still 
eleven nodes present (MALPAS 5). From the descriptions of the 
nodes and their successors given here by MALPAS, it is possible to 
construct the node graph depicted in MALPAS 6. Although this graph 
is not the complex 'spaghetti' that can be achieved in programs by the 
use of unstructured programming, one would probably wish to rewrite 
the code to simplify it if one discovered a complex structure such as 
this through using MALPAS during code development. Nevertheless, 
despite the complex structure, one can see that the example program 
has a single entry and exit point, no loops and no seriously undesirable 
features. 

Data use analyser 
The data use analyser describes how data is used within the program 
and from this one can check, for example, that all output variables are 
written as intended and that input variables are correctly read. This 
may be of particular benefit on a large program for checking the lists 
of specified inputs and outputs. 

The analyser itemises a number of different categories of data usage 
(see MALPAS 7) and these can be interpreted with the knowledge of 
the specific program to ensure that the data is used correctly. In this 
example, category 'R' shows that the water temperature ('temp') is 
read every time that the program is executed (as one would hope!), 
whilst category 'I' reveals that the status of the fan ('fan') is read only 



www.manaraa.com

A Structured Approach to Static and Dynamic Testing 117 

on some of the paths through the code. More importantly, although 
categories 'U' and 'V' show that both the thermostat aperture and the 
fan switching are written on some paths through the code, it can be 
seen from category 'w' that only the aperture is updated every time 
the program runs. Hence this is an early indication that the program 
does not do exactly as intended since the specification required the fan 
to be written (i.e. positively switched on or off) every time that the 
program is executed. 

This program does not have any data in the 'written twice without 
an intervening read' category ('A'); however, the identification of such 
data usage is often useful for revealing variables that may be updated 
to different values on different paths, variables that have been 
initialised before being written, or may simply indicate inefficient use 
of variables. 

Information flow analyser 
The information flow analyser identifies all the input variables upon 
which each output variable depends and provides an initial check that 
the program outputs are dependent upon the correct input values. The 
analyser also shows the conditional statements upon which each output 
variable depends and this is useful for determining whether the 
program can be partitioned into sub-programs by the partial program­
mer to enable semantic analysis of particular output variables. 

In MALPAS 8 one can see that the output variable 'aperture' 
depends on the input variables that one would expect, these being the 
water temperature ('temp') and the four constants that define both the 
thermostat open and closed states and the temperatures at which these 
occur. However, the other output variable 'fan', as well as being 
dependent on the variables that one would expect from the specifica­
tion, is also shown as being dependent on the supposedly unrelated 
temperatures at which the thermostat opens and closes ('tempopen' 
and 'tempclose') and therefore one is alerted to a potential error in the 
program. 

MALPAS 9 shows the conditional nodes upon which each of the 
two outputs depends and it can be seen that, whilst the variable 'fan' is 
dependent upon all five conditional nodes (and hence on all paths 
through the program), the variable 'aperture' is dependent on only 
two of the conditional nodes. Therefore, if 'aperture' is the only 
program output variable of interest, one can perform partial program­
ming for that particular variable and this is described below. 



www.manaraa.com

118 Engineering Quality Software 

Path assessor 
The results from the path assessor appear after the information flow 
analsis and MALPAS 10 shows that there are only six syntactically 
possible paths through this program. This is not of great importance in 
this example, especially as the number of paths can quite easily be 
calculated from MALPAS 6. However, the path assessor is of great 
use for large programs where, if it is shown that there are many 
hundreds of paths through the code, one is made aware that partial 
programming will be necessary to reduce program complexity and 
hence reduce the amount of semantic analysis to manageable 
proportions. 

Semantic analyser 
The semantic analyser is, with the exception of the compliance 
analyser, the most powerful of the MALP AS analysers and it describes 
the functional relationship between program inputs and outputs for 
each semantically possible path through the program. Hence, for the 
whole range of program input variables, it will reveal exactly what the 
program does in all circumstances. Once MALPAS has identified all 
the semantically possible paths through a program, this information 
can then be used to direct dynamic testing of the software during 
system validation. 

The analyser presents the results for each path through the program 
in terms of a predicate, defining the conditions upon which that path 
depends, followed by a set of actions or relationships that apply under 
the defined input conditions. For this particular example, it can be 
seen in MALP AS 11 that there are five sets of these predicate-action 
pairs, indicating that there are five semantically possible paths through 
the code. This is less than the number of syntactically possible paths 
identified by the path assessor because the data values within the 
program lead to one of the syntactically possible paths being impos­
sible to access. 

An immediate point to note in MALPAS 11 is that, unlike the 
results from the other MALPAS analysers, the constant variable 
names have been replaced by their declared integer values. This 
simplifies the interpretation of the results in this example but 
MALPAS does allow the constant names to be retained if required. It 
should also be noted that the statements between the MAP and 
END MAP statements are not sequential but represent parallel assign­
ments. Furthermore the variables on the left-hand side are the output 



www.manaraa.com

A Structured Approach to Static and Dynamic Testing 119 

variables whilst those on the right-hand side to which they are related 
are all input variables. 

The first three predicate-action pairs in MALP AS 11 are straightfor­
ward and one can easily see that they indicate that the program does 
what the specification stated that it should do for the given sets of 
conditions. 

However, close inspection of the fourth predicate-action pair shows 
the first error in the program, since the predicate states that at 95 
degrees the fan remains off if it is already off when the program is 
executed, yet the specification requires the fan to be turned on at 95 
degrees. A more significant error is revealed by the next predicate 
which states that the fan remains on between 83 and 87 degrees, 
instead of being switched off at 86 degrees as required, and hence the 
fan is turned off 3 degrees lower than it should be. 

The reason for these errors is apparent if one refers back to the 
information flow analysis (MALP AS 8), which revealed the incorrect 
dependence of the fan state on the thermostat opening and closing 
temperatures. Furthermore, the error first identified by the data use 
analyser, of the fan being written only on some paths through the 
code, is also apparent in these last two predicate-action pairs since the 
fan is not written at all on these paths. 

The clear and precise description of the program provided by the 
semantic analyser is invaluable for verifying the program code against 
its specification, either during code development or as part of a final 
assessment or certification exercise. This analyser is particularly useful 
for detecting subtle coding errors, either from the direct relationship 
between inputs and outputs, or from the predicates that determine 
those relationships, as for example has been revealed here where the 
predicate relationship required was 'less than' and the program was 
shown to implement 'less than or equal to'. Although such errors may 
be small, the effects that they have on system performance could be 
catastrophic . 

Another major benefit of this analyser is that it often reveals 
semantically possible paths through the code that the programmer was 
unaware of and may not have discovered despite extensive testing. In 
such cases it may be that the software will do something unexpected 
over a small range of input conditions and, whilst such input values 
may be outside the design range for the system with only a very 
remote chance that the conditions will be encountered in practice, it is 
of great benefit for MALP AS to reveal the existence of such 
conditions and to identify what happens in those circumstances. 



www.manaraa.com

120 Engineering Quality Software 

Partial programmer 
The partial programmer can be invoked when the program outputs of 
interest are dependent only on a subset of the total paths through the 
code and hence the semantic analysis for those particular variables is 
considerably reduced compared with the semantic analysis for the 
entire program. In this example the partial programmer has been run 
for the single variable 'aperture' with the result that there are only 
three predicate-action pairs from which (MALP AS 12) it is immedi­
ately obvious that the thermostat behaves exactly as specified. 

Compliance analyser 
The last and most recent MALP AS analyser is the compliance 
analyser which has been developed by RSRE Malvern using as yet 
unpublished mathematical theory. This analyser is intended to verify 
software by automatically comparing a program with its specification 
and explicitly identifying any differences between the two. 

In order to do this the program specification has to be expressed in a 
simple mathematical form and embedded in the IL program header. 
Although this sounds difficult, it is in fact surprisingly easy to do for 
most software specifications and the specification written for the 
example program is shown embedded in the IL text in MALPAS 13. 

The specification consists of a PRE statement, which defines the 
overall range of values that the input variables may take, and a POST 
statement, which defines the required relationship between program 
inputs and outputs. In this example an arbitrary range for the water 
temperature, of -50 to +120 degrees, has been specified in the PRE 
statement. 

The POST statement, like the semantic analysis results, takes the 
form of a predicate followed by a definition of the functional 
relationship required between program inputs and outputs. The first 
line of the POST statement in MALP AS 13 is therefore interpreted as 
"If 'temp' is less than or equal to 'tempclose' then 'aperture' = 
'closed' " and hence it can be seen that the POST statement is simply a 
mathematical form of the specification quoted above in words. 

The compliance analyser identifies any difference between the 
program and its embedded specification as a 'threat'. If the program 
implies or meets its specification then the 'threat' is declared false or, 
if MALP AS is unable to reduce the threat expression to such a simple 
form, is represented as a logical expression which the programmer can 
inspect to ensure that it is false. Alternatively, if there is a difference 



www.manaraa.com

A Structured Approach to Static and Dynamic Testing 121 

between the program and its specification then the threat will appear 
as a logical expression which can be true. 

In MALPAS 14 the compliance analyser identifies two threat 
conditions associated with the example program. The first of these 
conditions occurs when the water temperature is 95 degrees and the 
fan is off; we have already seen from the semantic analysis that the 
program does not meet its specification at this point since the 
specification requires the fan to be on whilst in the program the fan 
remains off. Similarly the second threat condition is the second error 
identified from the semantic analysis, namely that between 83 and 87 
degrees the fan is not switched off, as required in the specification. 

Conclusions 
The above paragraphs illustrate how MALP AS reveals the correctness 
of software code by describing the program in a form that can be 
directly compared with the program's specification. If errors are 
detected at a late stage of software development, the cost of correcting 
the errors and subsequently re-assessing the software can be large and 
hence the major benefits of MALPAS are to be realised if it is used 
throughout the design and development phase as well as over the rest 
of the software life-cycle. 

This is particularly true for the compliance analyser, since the 
translation of an existing specification into a mathematical form may 
be very time consuming if performed at a late development stage, 
especially if the original specification was imprecise and incomplete. If, 
however, MALP AS is used from the outset of a software design and 
development programme then the specification can be initially defined 
in the precise form required by MALPAS. The specification may even 
be embedded in the original source code as comments in such a way as 
to be interpreted by the automatic source-code-to-IL translator so that 
the specification will appear as pre- and post-conditions in the 
intermediate language text. It is also probable that writing the 
specification in a precise mathematical way will lead to clearer and less 
ambiguous specifications. 

MALPAS may also be used for the verification of software design if 
a formal methodology is used. The intermediate language incorporates 
a number of features making it suitable for software design, such as 
the ability to define abstract data types and then subsequently refine 
the definitions. This allows the design to be written either in IL or a 
formal design language / methodology, such as VDM or JSD and then 



www.manaraa.com

122 Engineering Quality Software 

translated into IL. Once the design is represented in IL then it can be 
verified using the semantic and compliance analysers. A number of 
papers have been written outlining details of the techniques involved 
in using MALP AS in this way. 

The use of MALP AS during software development encourages 
modular, well structured software, partly because any complex path 
structure and inefficient use of data will be identified by the control 
flow and data use analysers but also because semantic analysis of large 
multi-path segments of code can produce large amounts of output 
which may be time consuming to assess. Although one can use the 
semantic output reduction techniques, such as partial programming, 
that were developed for using MALP AS as a final assessment tool on 
mUlti-path code, it is obviously preferable if the software is sufficiently 
modular to permit easy interpretation of the analyser outputs. 
MALP AS is also particularly suited for analysis of modular software 
because, as has been mentioned above, it allows modules, levels and 
subroutines to be analysed separately and then represented by 
procedures before the analysis of the next higher level of the code. 

There are obviously costs associated with the use of MALP AS on 
software projects; although it is relatively quick and simple to run, it 
can be time consuming, initially at least, to interpret the results 
produced. However, once the analyst is familiar with the software 
being investigated and has experience of applying the separate 
MALPAS analysers then the process is considerably quickened. There 
is also the benefit when using MALP AS that the need for other 
verification and validation techniques, including testing, is reduced. 
Since MALPAS is a static technique, it will always be necessary to 
carry out some dynamic testing to investigate real-time aspects, 
although the need for this is considerably reduced if one already has 
confidence in the correctness of the code before testing starts. At 
present MALP AS is able to perform limited modelling of some real 
time aspects of programs (for example it is possible to use it to 
determine processor timings of different paths through the code), and 
in future developments it is intended to extend its real-time ap­
plicability. Nevertheless the static analysis of real-time software is of 
great benefit for the verification of such software (indeed the majority 
of the use of MALP AS has been on real-time systems) and by 
performing this at an early stage in the development of the system, it 
should reduce life-cycle costs and result in correct, more reliable 
software. 



www.manaraa.com

A Structured Approach to Static and Dynamic Testing 

VERIFICATION 
CONDITION 
GENERATOR 

1------\ ERRORS 

1-___ -1 SPADE 
ANALYSERS 

Fig. 8.2. SPADE. 

SYMBOLIC 
INTERPRETER 

CONTROL FLOW 
ANALYSER 

DATA FLOW 
ANALYSER 

INFORMATION 
FLOW 
ANALYSER 

PARTIAL 
PROGRAM 
EXTRACTOR 

THEOREM 
CHECKER 

123 



www.manaraa.com

124 Engineering Quality Software 

8.3.2 SPADE 
SPADE was developed at Southampton University and is now 
available from Program Validation Ltd, Southampton, UK. It also 
involves an intermediate language known as FDL (Functional Des­
cription Language). An FDL model of a program can be constructed 
automatically, using a translator, or by hand. FDL is not a program­
ming language but a method of describing a program in terms of states 
and transitions. Figure 8.2 represents the structure of SPADE. 

This automatic translation is available for Pascal and INTEL 8080 
with a Modula 2 version under construction. An Ada subset, called 
SPARK, is also available. This is a limited subset of Ada intended for 
the implementation of safety critical software. SPADE can currently 
be run on DEC VAX machines (including Micro Vax II and 11/730) 
under the VMS (Virtual Memory System) operating system. 

SPADE consists of a number of 'flow analysers' and 'semantic 
analysers' as follows: 

Control flow analyser. This addresses the control flow and loop 
structure of the program and reports on unused code, multiple entry 
and similar faults. 

Data flow analyser. This seeks undefined data variables and unused 
definitions. 

Information flow analyser. This constructs the relationships between 
inputs and outputs and checks their consistency with the specification. 
It will, as a result, indicate ineffective statements and variables. 

Partial program extractor. Taking a specified variable, the partial 
program extractor identifies just those statements which affect that 
value. These are then assembled as a 'partial program'. 

Verification condition generator. This describes the path functions 
and the conditions under which they are executed. Verification can 
thus be carried out if a specification is provided. 

Symbolic interpreter. The text is executed and paths are identified. 
Data-flow errors, check statements and run time tests are included. 

Theorem checker. This proofchecker (written in PROLOG) permits 
verification at an arithmetic/logical level. 

8.3.3 TESTBED (LORA) 
Formally known as LDRA, TESTBED was developed by Liverpool 
Data Research Associates and is now marketed by Program Analysers 
Ltd of Newbury, Berkshire, UK. 



www.manaraa.com

A Structured Approach to Static and Dynamic Testing 125 

Static Reference 
analysis listings 

I ~ ~ ~ 
Complexity 

Instrumentation analysis Management 
QA 

n ~ 
Complexity Testing 
metrics Identification 

of test paths 

~ ~ 
Structured Dynamic Test 
prog-amming analysis f----+ coverage 
verification reports 

~ I ~ 
Fig. 8.3. TESTBED. 

TESTBED involves dynamic as well as static analysis and is 
therefore also included in Section 8.4. It is available for CORAL 66, 
Pascal, FORTRAN, COBOL, PL/l, C, PL/M86 and Ada and will 
run on UNIX, IBM, VAX, SUN and GOULD systems. 

TESTBED identifies program paths as a number of path fragments 
during static analysis of control flow. It generates reference listings and 
management quality assurance summaries. The user may then subject 
the software to complexity analysis which will produce complexity 
metrics and structured programming verification reports. Figure 8.3 
gives an outline of the TESTBED structure. The dynamic testing 
aspects are described in Section 8.4. 

8.4.1 Test Levels 

Module tests 

8.4 DYNAMIC TESTING 

These are stand-alone tests of individual modules not yet integrated 
into the system. Hardware will probably not be available at the stage 



www.manaraa.com

126 Engineering Quality Software 

when module tests are being carried out. Data inputs are therefore 
simulated manually or by means of test drivers with results and 
outputs being displayed on the VDU and printer. 

Integration tests 
This is a most important phase of testing. Bottom-up integration is the 
traditional approach whereby modules are tested together and a 
pyramid is built up. Only then is it possible to test the system as a 
complete set of functions. An alternative approach is the top-down 
method which involves building a set of simulation drivers, known as 
stubs, in order to provide a complete artificial system. This was also 
described in Section 4.7. Modules, and groups of modules, can then be 
tested as they become available. This approach has several 
advantages: 

(a) A single test specification can apply throughout. 
(b) All possible interactions of a module to the remainder of the 

system are likely to be tested. 
(c) Complex system timing faults are likely to be revealed at an 

earlier stage. 

There are many problems which arise during the process of integrating 
a system. 

Diagnosis of the causes of failure, during integration and test, can be 
complicated by the fact that faults can interact to give symptoms quite 
different from those which they would produce as individual bugs. As 
a result, the rework after a particular test may not be adequate 
although it might seem that the problem has been rectified. 

Modules, or subsystems, may perform correctly when tested alone 
but fail in combination. Unless this is foreseen during the writing of 
the integration test procedures, hidden faults can remain. 

The time required for development and production of the various 
test harnesses may be underestimated. In that case integration tests 
will commence with incomplete test facilities and the result will be 
harder diagnosis of faults and incomplete testing. 

Failures may relate to loading, timing and speed features of the 
inputs, outputs and data. 

If the interfaces between modules and between the system and the 
tester are not fully understood, tests will not be conclusive and 
diagnosis will be harder. 



www.manaraa.com

A Structured Approach to Static and Dynamic Testing 127 

The ease of testability of software is clearly a function of the code 
itself and it would seem obvious that this must be designed in. The 
most powerful method of achieving this is to provide built-in self-test 
routines in the code. It is an· area which may well provide an 
application for expert systems. 

System tests 
The purpose of system testing is to utilise known input stimuli and 
data to check that the outputs conform to the established specification. 
These performance tests include: 

Functional tests. To test the defined performance. 
Environmental tests at stress limits. It is often pointed out that 

software is not affected by temperature or humidity. This is true but, 
nevertheless, the changes in electrical characteristics which result can 
alter timing features and thereby cause faults. 

Misuse tests. Take account of the fact that products will be used 
outside their stipulated range of operating conditions. 

Maintainability tests. To demonstrate ease of diagnosis and repair 
under simulated fault conditions. 

Various techniques and test tools are employed and these will be 
outlined in the next two sections. 

Production tests 
The above test levels constitute qualification tests because they 
'qualify' the design against the specification. Production tests, on the 
other hand, are repetitive and merely confirm that the build of 
production items has not changed. 

8.4.2 Dynamic Test Tools 
These test tools include: 

Test drivers. These are used to input data into a module under test 
and to receive the resulting data output for checking. They are 
simulators which can mimic unavailable items of hardware or software. 

Test beds. More sophisticated than the simple driver described 
above, they can display simultaneously the source code alongside the 
executing program. They show the values of variables and indicate 



www.manaraa.com

128 Engineering Quality Software 

those portions of code affected. Current packages include: 

(a) FPE (FORTRAN Programming Environment) from SOF­
TOOL (USA) which caters for FORTRAN programs. 

(b) COBOL Animator from Microfocus which caters for COBOL 
programs. 

(c) A CORAL test bed from Software Sciences Ltd. 

Emulators. 'Intelligent' communications analysers having program­
mable stimulus and response facilities are used to emulate parts of the 
system (including their responses) not yet developed. In this way the 
software is tested as if it were surrounded by a real system. 

Assertion checkers. Insert code statements (probes) and flag the 
results. 

Path testers. Similar to the static testers but require the code to be 
executed. 

Mutation analysers. Seed intentional errors into the code to test the 
fault tolerance of the system. 

Symbolic execution tools. Execute the arithmetic and logic with 
symbolic variables following calculus rules. It could be argued that this 
is a static test since no execution is involved, the functions being tested 
symbolically. 

The TESTBED tool was introduced in Section 8.3.3 since it contains 
a module of static analysis. It is also a dynamic analysis tool. It 
produces test effectiveness ratios that define how well a program has 
been tested. Heavily used as well as unused statements are high­
lighted. The source code is compiled, linked and executed with 
appropriate sets of test data under control of a menu system. Upon 
termination of the user program an additional file is generated by the 
instrumentation. Dynamic analysis is invoked to interrogate this file to 
generate reports on the effectiveness of the data simulation. This 
dynamic operation can be repeated, with selection of alternate sets of 
data, until a satisfactory test effectiveness is obtained. 

8.5 TEST MANAGEMENT 

Software testing is gradually undergoing a transition from being a 
'black art' to becoming a science. In other words, test methods based 
on undocumented experience and subjective judgements are being 
replaced by formally designed tests. 



www.manaraa.com

A Structured Approach to Static and Dynamic Testing 129 

One essential requirement is the existence of a test manager, who 
must be appointed at the beginning of the project. The whole structure 
and philosophy of the tests are dependent on the requirements 
specification and on the system configuration. The test plan and an 
outline of test methods must therefore begin to evolve, along with the 
hierarchy of documents, right from the beginning. Lead times for the 
procurement of simulators, test hardware, environmental facilities, 
etc., are long, and this adds greater emphasis to the need for test 
management at the earliest possible stage. 

The first document, as regards testing, will be the test strategy. This 
might be a separate document or may form part of the quality plan. It 
will outline the various levels of test (described in the remainder of 
this chapter) and how these will build up to a final functional system 
test. Broad details of the test hardware and software which will be 
needed to carry out the various integration, simulation, loading and 
other tests will also be given. This, and the subsequent test documents, 
should not be produced by the designers but by a separate test 
authority. 

Other essential documents will follow as the design proceeds. These 
include: 

Test specifications. One for each separate test activity of which there 
may be several dozen. It will describe the functions to be tested and 
the test method to be employed, including the range of values which 
will be covered. The test equipment required is also described here. 

Test procedures. The actual test instructions down to the details of 
connecting test equipment and the actual inputs to be applied and 
their sequence. A good test procedure should contain the anticipated 
result of each test and a record sheet on which to record the results. 

Test records. There should be a test record for every test and, as 
mentioned above, this may be a part of the test procedure document. 

Test utilities specification. Both the hardware and computer facilities 
needed for all the tests are specified here. Any test software (i.e. 
programs which provide test data so as to simulate modules or 
hardware items not yet designed) is also described here. 

Test reports. There should be a test report for each test or group of 
tests. The main benefit is that the report provides a medium for 
recording any actions which arise as a result of the faults revealed. The 
actions, having been formally recorded, can then be reviewed until 
they are discharged. 



www.manaraa.com

130 Engineering Quali~ Software 

CHECKLIST 8.1: TEST AND INTEGRATION 

(1) Are there written requirements for testing subcontracted or 
proprietary software? 

(2) Are there test plans/schedules/specifications and are they written 
in parallel with the design? 

(3) Is there a build-up of integration and testing (e.g. module test 
followed by subsystem test followed by system test)? 

(4) Is there evidence of test reporting and remedial action? 
(5) Is there evidence of thorough environmental testing? 
(6) Is there a defect-recording procedure in active use? 
(7) Do test schedules permit adequate time for testing? 
(8) Is a sim~lation possible on a larger configuration and, if so, is it 

planned? 
(9) Are software prototypes envisaged for use in demonstrating the 

system concepts to the user? If so, at what stage will they be 
produced and what will they cover? 

(10) Is the test facility a deliverable item? 
(11) Is the test software under build state control? 
(12) Can the test facility demonstrate all operational modes including 

behaviour under degradation conditions? 
(13) Is the test hardware and its configuration thoroughly defined? 
(14) Is there evidence of repeated slip in the test programme? 
(15) To what extent are all the paths in the program checked? 
(16) Does the overall design of the tests attempt to prove that the 

system behaves correctly for improbable real time events (e.g. 
misuse tests)? 

(17) Does the test address what the system should not do as well as 
what it should? 

(18) Is there evidence of software changes being implemented to 
circumvent hardware defects? 

(19) Are 'power up' and 'power fail' tests included? 



www.manaraa.com

A Structured Approach to Static and Dynamic Testing 131 

MALPAS 1 
'CORAL' CAR; 

'SEGMENT' COOLING 
'BEGIN' 

MALPAS EXAMPLE 

'DEFINE' TEMPCLOSE "83"; 
'DEFINE' TEMPOPEN "96"; 
'DEFINE' TEMPON "95"; 
'DEFINE' TEMPOFF "86"; 
'DEFINE' CLOSED "0"; 
'DEFINE' FULLYOPEN "100"; 
'DEFINE' OFF "0"; 
'DEFINE' ON "1"; 

'INTEGER' TEMP, FAN, APERTURE; 

'PROCEDURE' HOTORCOLD ('VALUE' 'INTEGER' OPENSHUT, ON OFF; 
'LOCATION' 'INTEGER' APERTURE, FAN); 

'BEGIN' 
APERTURE:= OPENSHUT; 

FAN :=ONOFF 
'END'; 

'IF'TEMP <= TEMPCLOSE 'THEN' 
HOTORCOLD (CLOSED, OFF, APERTURE, FAN) 
'ELSE' 
'IF' TEMP >= TEMPOPEN 'THEN' 
HOTORCOLD (FULLYOPEN, ON, APERTURE, FAN) 
'ELSE' 
'BEGIN' APERTURE: = FULL YOPEN * 

((TEMP - TEMPCLOSEI/(TEMPOPEN - TEMPCLOSE)); 
'IF' TEMP> TEMPON 'THEN' 'GOTO' L 10; 
'IF' FAN <> OFF 'THEN' 
'BEGIN' 

'IF' TEMP> TEMPOFF 'THEN' 'GOTO' L 10 
'END'; 
'GOTO'L20; 

L10: FAN:= ON; 
L20: 

'END' 
'END' 
'FINISH' 



www.manaraa.com

132 

MALPAS 2 
TITLE carcooling; 

Engineering Quality Software 

CONST tempclose : integer = 83 ; 
CONST tempopen : integer = 96 ; 
CONST tempon : integer = 95 ; 
CONST tempoff : integer = 86 ; 
CONST closed: integer = 0 ; 
CONSTfullyopen : integer = 100; 
CONST off : integer = 0 ; 
CONST on : integer = 1 ; 

PROCSPEC hotorcold (IN openshut, onoff : integer 
OUT aperture, fan: integer) 

DERIVES aperture AS openshut, fan AS onoff ; 

MAIN 

VAR temp, fan, aperture: integer; 

IF temp <= tempclose THEN 
hotorcold( closed, off, aperture, fan) 

ELSIF temp >= tempopen THEN 
hotorcold( fullyopen, on, aperture, fan) 

ELSE aperture: = fullyopen * 

33:[L10:) 

((temp - tempclose) / (tempopen - tempclose)); 
IF temp> tempon THEN GOTO 33 ENDIF; 
IF fan/= off THEN 

IF temp> tempoff THEN GOTO 33 ENDIF; 
ENDIF; 

GOTO 35; 

fan:= on; 
35; [L20:); 

ENDIF; 

ENDMAIN 

PROC hotorcold; 
aperture:= openshut; 
fan: = onoff; 

ENDPROC; 

FINISH 



www.manaraa.com

A Structured Approach to Static and Dynamic Testing 133 

MALPAS 3 
[1] TITLE carcooling; 
[2] 
[3] 
[4) 
[5) 
[6) 
[7) 
[8) 
(9) 
(10) 
[11) 
(12) 
[13) 
[14) 
[15) 
[16) 
[17) 
(18) 
[19) 
[20) 
[21) 
(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(27) 
(28) 
[29) 
(29) 
(29) 
(30) 
(31) 
[31) 
(31) 
[32) 
(32) 
(33) 
(34) 
(35) 
(36) 
[37) 
[38) 
(38J 
[39J 
(40) 
[4OJ 
[40J 

CONST tempclose : integer = 83 ; 
CONST TEMPOPEN : integer = 96 ; 
CONST tempon : integer = 95 ; 
CONST tempoff : integer = 86 ; 
CONST closed: integer = 0 ; 
CONST fullyopen : integer = 100 ; 
CONST off : integer = 0 ; 
CONST on : integer = 1 ; 

PROCSPEC hotorcold (IN openshut. onoff : integer 
OUT aperture, fan: integer) 

DERIVES aperture AS openshut, fan AS onoff ; 

MAIN 

VAR temp, fan, aperture: integer; 

#1: IF temp <= tempclose THEN 
#3: hotorcold( closed, off, aperture, fan) 

#4: ELSIF temp >= tempopen THEN 
#5: hotorcold( fullyopen, on, aperture, fan) 

ELSE 
#6: aperture:=fullyopen* 

((temp - tempclose) / (tempopen - tempclose)); 
#7: IF temp >tempon THEN 
#9: GOTO 33 
#8: ENDIF; 

#10: IF fan/= off THEN 
#12: IF temp >tempoff THEN 
#14: GOTO 33 
#13: ENDIF; 
#15: [SKIP) 
#11: ENDIF; 

#16: GOTO 35; 

33: [110:) fan:=on; 
35: [120:) [SKIP) ; 

#17: [SKIP) 
#2: ENDIF; 

#18: [SKIP) 
#STOP: [SKIP) 
#END: ENDMAIN 



www.manaraa.com

134 

#1: 
#2: 
#3: 

(41) 
(42) 
(43) 
(44) 
(45) 
(46) #END: 

MALPAS 4 

Section: 

mainsection 

hotorcold 

Engineering Quality Software 

PROC hotorcold; 
aperture: = openshut; 
fan:= onoff; 

[SKIP) 
ENDPROC; 

Call Graph 
Calls: 

hotorcold 



www.manaraa.com

A Structured Approach to Static and Dynamic Testing 

MALPAS 5 
Recovering graph 

After ONE-ONE, 12 nodes reduced 

No selfloops reduced 

Node No of 
id predecessors 

#START 0 
33 2 
35 2 
#1 1 
#2 3 
#4 1 
#7 1 

#10 1 
#11 2 
#12 1 

#END 1 

MALPAS 6 

Successor 
nodes 

#1 
35 
#2 
#2 #4 

#END 
#2 #7 
33 #10 

#11 #12 
35 
33 #11 

#START 

#1 

#2 

lEND 

135 



www.manaraa.com

136 Engineering Quality Software 

MALPAS 7 
Key: 

H = Data read and not subsequently written on some path between the 
nodes 

I = Data read and not previously written on some path between the nodes 
A = Data written twice with no intervening read on some path between the 

nodes 
U = Data written and not subsequently read on some path between. the 

nodes 
V = Data written and not previously read on some path between the nodes 
R = Data read on all paths between the nodes 

W = Data written on all paths between the nodes 
E = Data read on some path between the nodes 
L = Data written on some path between the nodes 

After HECHT (from ONE-ONE) 

From 
node 

To 
node 

Data-use expression 

# START #END 

Summary of Possible Errors 

Data never used 

H : fan temp 
I: fan temp 

U : aperture fan 
V : aperture fan 
R : temp 

W: aperture 
E : fan temp 
L : aperture fan 

Data that may be written twice with 
no intervening read 

INs never read 

INs that may be read but whose 
initial values are never read 

INs that may be read but would 
subsequently be written and not used 

INs always written 

INs that may be written 

INs used as local workspace whose 
final values may not be used 

INOUTs never written 

: None 

: None 

: None 

: None 

: None 

: None 

: None 

: None 

: None 



www.manaraa.com

A Structured Approach to Static and Dynamic Testing 

INOUTs always written but whose 
initial values are never read 

OUTs never written 

OUTs that may be written but only 
after being read when undefined 

OUTs that may be read when undefined 

OUTs that may not be written on 
some paths 

VARs never read 

VARs never written 

VARs that may be read but would 
subsequently be written and not used 

VARs that may be written but only 
after being read when undefined 

VARs that may be read when undefined 

VARs whose final values may not be 
used 

: None 

: None 

: None 

: None 

: None 

: aperture 

: temp 

: None 

: None 

: fan temp 

: aperture fan 

137 



www.manaraa.com

138 Engineering Quality Software 

MALPAS 8 
Information Flow 

After HECHT (from ONE-ONE) 

From To 
Node Node Identifier 

# START #END fan 

aperture 

may depend on identifier(s) 

: fan off on temp tempclose tempoff tempon 
tempopen 

: closed fullyopen temp tempclose tempopen 

MALPAS 9 
Identifier may depend on conditional node(s) 

fan 
aperture 

MALPAS 10 
Path Assessor Output 

#12 
#4 

After HECHT (from ONE-ONE) 

From 
Node 

#START 

To 
Node 

#END 

#10 
#1 

#7 #4 

Number of paths 

6 

#1 



www.manaraa.com

A Structured Approach to Static and Dynamic Testing 

MALPAS 11 
Semantic analysis 

After HECHT (from ONE-ONE) 

From node: #START 
To node #END 

IF temp<=83 

THEN MAP 
fan:= 0; 

aperture:= 0 
ENDMAP ENDIF 

IF temp>=96 

THEN MAP 
fan:=1; 

aperture:= 100 
ENDMAP ENDIF 

IF temp>=87 AND temp<=95 AND fan/=O 

THEN MAP 
fan:=1; 

aperture: = 100 * ((temp - 83) / 13) 
ENDMAP ENDIF 

IF temp>=84 AND temp<=95 AND fan=O 

THEN MAP 
aperture:= 100 * ((temp - 83) / 13) 

ENDMAP ENDIF 

IF temp>=84 AND temp<=86 AND fan/=O 

THEN MAP 
aperture: = 100 * ((temp - 83) / 13) 

ENDMAP ENDIF 

139 



www.manaraa.com

140 Engineering Quality Software 

MALPAS 12 
Semantic analysis 

Recovering graph and extracting the partial program 
for the following output variables: 

aperture 

After ONE-ONE 

From node : #START 
To node #END 

IF temp<=83 

THEN MAP 
aperture: = 0 

ENDMAP ENDIF 

IF temp>=96 

THEN MAP 
aperture:= 100 

ENDMAP ENDIF 

IF temp >= 84 AND temp <= 95 

THEN MAP 
aperture:= 100 * ((temp - 83) / 13) 

ENDMAP ENDIF 



www.manaraa.com

A Structured Approach to Static and Dynamic Testing 

MALPAS 13 
TITLE car_cooling; 

CONST tempclose : integer = 83; 
CONST tempopen : integer = 96; 
CONST tempon : integer = 95; 
CONST tempoff : integer = 86; 
CONST closed: integer = 0; 
CONST fullyopen : integer = 100; 
CONST off : integer = 0; 
CONST on : integer = 1 ; 

PROCSPEC hotorcold (IN openshut, onoff: integer 
OUT aperture, fan: integer) 

DERIVES aperture AS openshut, fan AS onoff 
POST aperture = 'openshut AND fan = 'onoff; 

MAINSPEC (lNOUT temp: integer 
OUT fan, aperture: integer) 

PRE temp>= -50ANDtemp<= 120 
POST (( temp <= tempclose ) - -> ( aperture = closed )) 

AND (( temp> tempclose AND temp < tempopen ) 
- -> (aperture = fullyopen * ((temp - tempclose)/(tempopen - tempclose)) )) 
AND (( temp >= tempopen ) - -> ( aperture = fullyopen )) 
AND (( temp <= tempoff) - -> (fan = off )) 
AND (( temp> tempoff AND temp < tempon AND fan /= on ) - -> ( fan = off )) 
AND (( temp> tempoff AND temp < tempon AND fan /= off) - -> ( fan = on )) 
AND (( temp >= tempon ) - -> (fan = on )); 

MAIN 

IF temp <= tempclose THEN 
hotorcold ( closed, off, aperture, fan) 

ELSIF temp >= tempopen THEN 
hotorcold ( fullyopen, on, aperture, fan) 

ELSE aperture: = fullyopen * 
((temp - tempclose)/(tempopen - tempclose)); 

IF temp> tempon THEN GOTO 33 ENDIF; 
IF fan /= off THEN 

IF temp> tempoff THEN GOTO 33 ENDIF; 
ENDIF; 

GOTO 35; 

33: [L10:) fan:= on; 
35: [L20: ) ; 
ENDIF; 

ENDMAIN 

141 



www.manaraa.com

142 

PROC hotorcold; 
aperture: = openshut; 
fan:= onoff; 

ENDPROC; 

FINISH 

MALPAS 14 

Engineering Quality Software 

All procedure calls are consistent with the required pre-conditions. 

Compliance analysis 

After HECHT (from ONE-ONE) 

From node: #START 
To node #END 

threat:= temp = 95 AND fan = 0 OR temp> = 84 AND temp <= 86 AND fan /= 0 



www.manaraa.com

Chapter 9 

Languages and Their Importance 

9.1 PROGRAMMING LANGUAGE-THE 
COMMUNICATION MEDIUM 

The process of translating a design into some particular programming 
language is more often than not regarded as 'programming'. Tradi­
tionally it has certainly been the case that the development of 
software-based systems has tended to emphasise the coding phase at 
the expense of the rest of the life-cycle. The reason for this is 
understandable. The programmer likes communicating with the com­
puter and his means of doing this is via some mutually understood 
language. Strictly speaking, of course, this is not true since the original 
source text, generated by a programmer, has to go through various 
stages of translation before the computer can 'understand' what it is 
being asked to do. Even for interpretative languages this is the case. 
However, it still remains that the programming language is seen as the 
creative medium through which the programmer expresses his inter­
pretation of some design, be it expressed in plain English or some 
formal methodology as discussed in Chapter 6. 

The number of different programming languages is vast. Even 
within the description 'programming language' we must differentiate 
between various types. The category of language with which most 
programmers are familiar is known as imperative (or procedural) 
language. Included in this group are FORTRAN, Pascal, and Ada. 
When one programs in these languages one 'prescribes' the manner in 
which the computer is to go about solving the problem. That is to say, 
one explicitly specifies the control flow necessary to carry out a given 
computation. The other category of language is known as applicative 
(or declarative) and describes/declares the logical structure of a 

143 



www.manaraa.com

144 Engineering Quality Software 

problem in that it specifies what kind of solution is being sought. 
These two language categories tend to be used in different problem 
areas but there is now much interest in the use of declarative 
languages such as LISP and PROLOG,' over a wide range of 
problems. 

Apart from an array of different programming languages, the areas 
of application tend to be divided into two real world categories: real 
time and non-real time. The term 'real time' can be used to describe 
any information processing system which must respond to external 
events or stimuli within some period of time. For example, an 
automatic teller machine, outside a bank, is part of a real time system 
since it must respond to customer demands for information and money 
and must interface with the up-to-date data within the bank. On the 
other hand, a piece of software which performs a payroll calculation 
does not fall into the domain of real time since it has only to produce a 
list of monthly or weekly salaries and the appropriate deductions while 
updating a payroll data base. The only constraint is that it must 
complete the operation in less than one week. 

The application areas where one tends to find real time systems are 
mainly of an 'industrial' type, e.g. process control, plant control, 
communications, medical, military. Because of this need for a response 
to external stimuli a computer language that is used to develop a real 
time system must have certain additional attributes over languages 
which are used for non-real time development. Languages such as 
FORTRAN and COBOL are not real time languages. That is to say 
they do not have the necessary constructs which allow one to respond 

SOURCE 
CODE ~ ASSEMBLER HIGH LEVEL 
TYPE 1 / ~ 

ASSEMBLER COMPILER INTERPRETER 

j 
1 

j LINK 

1 
MACHINE CODE 

Fig. 9.1. 



www.manaraa.com

Languages and Their Importance 145 

to those external stimuli. It must be stated, however, that certain 
manufacturers of compilers do add-on this facility to allow the 
language to cope with real time situations. The main point is, 
however, that such languages were not designed with real time 
applications in mind and thus will not be efficient when used with 
add-on facilities. Only relatively recently have genuine real time 
languages been designed and produced, the best-known being Ada. 
Modula 2 also falls into this category. 

The choice of language for a particular application is a difficult one 
and is often decided as the result of factors outside the immediate 
constraints that one might be considering. For example, it may have 
been decided that because of a harsh environment only one type of 
computer hardware is suitable. If that particular machine has only, 
say, FORTRAN available, then the choice of language is narrowed to 
one. Thus both system and software designers must adapt their designs 
such that the use of FORTRAN can achieve the design aims. With the 

1 at Generation 

2nd Generation 

3rd Generation 

4th Generation 

MACHINE CODE 

10101110 10010001 

ASSEMBLER 

8085, Z80, 6800 etc. 

HIGH LEVEL LANGUAGE 

Procedural (line by line instructions) 

Pascal CORAL 66 

BASIC etc. 

Declarative (state the problem) 

LISP 

PROLOG 

Hope 

(FORTH) 

Object Oriented (models) 

SMALLTALK 

DATA BASED (not real time) 

MANTIS 
CICS 
SOL 

Fig. 9.2. 



www.manaraa.com

146 Engineering Quality Software 

recent adoption, by various government agencies, of 'standard' lan­
guages (e.g. validated Pascal and Ada) the problem has been reversed 
to that of 'here is the language, which compatible system is suitable?' 
This leads to consideration of what is required of a real time language. 

Figure 9.1 reminds us of a number of terms and places them in 
perspective. Figure 9.2 shows the four basic groups into which 
languages can be grouped. This chapter elaborates. 

9.2 THE REQUIREMENTS OF REAL TIME LANGUAGES 

Because of the nature of such systems, and their inherent complexity, 
there are certain additional criteria that must be addressed. Not all of 
these criteria are applicable to all languages, but all of them apply to 
real time languages. 

9.2.1 Simplicity 
Perhaps the overriding requirement for any language is that it be 
inherently simple. Achieving this leads to a number of advantages 
when one considers training, maintainability and portability. A good 
example of such a language is OCCAM developed for the transputer 
produced by INMOS. OCCAM was developed for a specific need but 
was designed with simplicity as the uppermost requirement. 

9.2.2 Security 
A secure computer language is one which is able to deal with errors 
made during programming or which occur at run time. Generally real 
time software needs to operate as reliably as possible and this places 
an added constraint that the language intrinsically allows one to create 
reliable programs. The first stage is clearly that errors made during 
programming be detected. The cost of correcting such errors at this 
stage is obviously less than during testing or, worse still, during 
service. As an example, if a language is strongly typed this helps 
prevent erroneous use of variables in expressions and forces the 
programmer to think more clearly about the way data is to be handled 
and transformed. The second stage is the detection of run time errors. 
These are faults which were not detected during compilation. Ada, for 
example, provides what it calls exception handling. That is, if some 
error condition occurs outside the predicted scope of the program, in 
other words an exception, facilities are provided to deal with the 
condition which might otherwise lead to failure of the program. 



www.manaraa.com

Languages and Their Importance 147 

9.2.3 Adaptability 
The language must allow the programmer sufficient flexibility to deal 
with the external environment since, in real time systems, it is most 
often the case that exotic peripherals need to be embraced by the 
system. Having to resort to machine code greatly jeopardises the 
integrity of the system and the language should, ideally, be adaptable 
enough to allow the sort of operations which are necessary. 

9.2.4 Readability 
One often-overlooked aspect of language design is the provision of 
constructs and facilities which allow the programmer to produce an 
easily read, and thus easily understood, program. Readability takes on 
great importance when modification is necessary by a programmer 
who may not have been involved in the original development. A 
language such as FORTRAN does not enforce readability on the 
programmer, whereas Pascal lends itself to better structuring and thus 
enhanced readability by virtue of its block structure. 

9.2.5 Portability 
The idea of language portability is one which has been around for a 
long time but its realisation in an actual language has taken many 
years to effect. There is inevitably a compromise here since, very 
often, a language implementation is mapped strongly on to the 
underlying hardware, thus making machine portability almost impos­
sible. However, by separating out implementation-dependent aspects 
it is possible to attain portability and thus amortise the cost of the 
system development over a number of different hardware environ­
ments. An example of this is the ISO definition of Pascal which has 
allowed developers of Pascal-based systems to be confident of the 
portability between systems which support this standard. 

9.2.6 Efficiency 
Efficiency in a language has a number of distinct and often conflicting 
aspects. Until the recent fall in the cost of hardware, one of the most 
important considerations was the efficient use of available memory. It 
was often necessary to go to extraordinary lengths to squeeze a 
program into the available memory, often with the consequence that 
some of the requirements listed above could not be met. A further 
aspect of efficiency is to provide a language which can achieve the 
execution speed necessary to react to the stimuli being monitored. 



www.manaraa.com

148 Engineering Quality Software 

With the relative decrease in hardware costs such considerations are 
becoming secondary and thus the onus of maintaining efficient 
programs falls on the language designer rather than the programmer. 

9.3 PROGRAM STRUCTURES 

The use of top-down design methods leads to considering the necessity 
of providing some means of mapping that design on to the language. 
That is, the programming language must be capable of representing a 
successive refinement of the design and thereby continuing the 
top-down process. Perhaps the most important construct which begins 
this is the module. A module is a collection of objects and their 
operators which is encapsulated in such a way that access from outside 
the module is controlled. 

Within this module the language must provide some basic forms of 
control statement as, for example, the conditional statement: 

IF statement THEN statement ELSE statement 

or more specifically: 

IF x=O THEN M:=M+ 1 ELSE RETURN 

Another example is the WHILE statement: 

WHILE statement DO statement 

Such statements allow one to construct efficient and readable pro­
grams. The design of control statements is still a contentious area. 
Much attention has been paid to the use of the GOTO statement with 
various arguments presented as to its desirability or otherwise. 

Once one is satisfied with the basic building blocks it is possible to 
consider the way in which they can be assembled within a module. 
One common approach is to assemble the program actions into some 
sort of block structure, perhaps delineated by the use of 
BEGIN ... END. This makes it possible to define the scope of 
variables, which helps to improve efficiency in the program. Proce­
dures and functions may be employed which allow the computation of 
frequently repeated tasks. Names can be given to these tasks such that 
they can be repeated as often as is necessary. Procedures also allow a 
better representation of the top-down structures. A function is a 
special form of procedure which has the specific task of computing a 
single value. 



www.manaraa.com

Languages and Their Importance 149 

9.4 CONCURRENCY 

Perhaps one of the most important facilities of a real time system is its 
ability apparently to execute several actions simultaneously. Once 
called multi-tasking, this involves the ability to execute several tasks or 
processes simultaneously. This can be achieved either by dividing up 
the time available that a CPU spends on each task or, in the case of 
true multiprocessing, by providing a multiple processing architecture 
with the appropriate synchronisation mechanism. 

One obvious difficulty of concurrent systems is that some or all of 
the executing tasks may well be dependent on each other, so 
mechanisms have to be devised to enable the system to ensure that 
one particular task is completed before another starts. The solution to 
this, provided by Ada, is the so-called 'rendezvous' which provides a 
means by which two tasks may communicate. A different approach to 
this is to use a message-passing mechanism in which all task interaction 
is via the transmission of messages. A common approach within high 
level languages involves the introduction of a construct called the 
buffer. For example, a declaration of the type: 

Mail-Box: Buffer [12 ] of Message; 

which would create a mail-box buffer which can store up to 12 
messages. 

There are various other mechanisms which a real time language 
requires. One already mentioned is exception handling. In the case of 
a serious error it may be necessary to abort a process: 

Abort (P) where (P) is an executing task. 

Another necessary facility in a real time system is a clock for delaying 
a task or for waiting until some specified time. Also, it is useful to 
have some form of time-out mechanism. 

9.5 DESIGN OF LANGUAGES 

One of the main topics for consideration when designing a real time 
language is that of data typing. This is the feature, in a language, 
whereby each variable has to be bound explicitly to a specified data 
type. For example, volume and length could be derived from a mass 



www.manaraa.com

150 Engineering Quality Software 

variable but a length value could not be assigned to a volume variable. 
It also means that the Js and Ks often assigned as loop counters have 
to be initially declared as integer types. 

This affects the security aspects of the language and its flexibility. 
The readability will also be strongly affected by the language typing 
system. Whilst weak typing will allow more flexibility, for example 
manipulating bits, it is inherently insecure and wherever possible 
strong typing should be designed in with additional language features 
to make up for any possible loss in flexibility. 

Program structuring can be divided into two levels. At the basic 
level, control structures are needed to specify the sequence in which 
basic program actions are executed. At the higher level, structures are 
needed to group sets of selected actions into single units. Together 
these two levels provide a mechanism of structured programming. 

In mUlti-program systems the up-to-date approach is to introduce 
specific constructs for task specification, task communication and 
synchronisation into the language itself. This leads to much higher 
security as greater checking can be done when compiling. It does, 
however, put greater emphasis on production of higher-quality 
compilers. 

Low level or assembler programming cannot always be tackled in a 
high level language; indeed, it may be desirable to avoid doing so, 
unless a high level language can allow bit-level manipulation, it will 
always be necessary to resort to low level programming. This need 
tends to be recognised and thus mechanisms are usually provided to 
facilitate the production of device drivers and the like. 

One useful feature is that of separate compilation. Having to 
re-compile all programs each time a fault is corrected is both tedious 
and time-consuming. 

Other features which need to be considered are the initialisation of 
variables and the features of input and output. It can be the case that a 
programmer may omit to initialise a variable before use and it is often 
considered desirable to make a compile time decision to initialise all 
variables. Within real time systems, the provision of input/output 
facilities is particularly difficult. Since each system is likely to be 
specific to a location, or a system in which it is embedded, such 
facilities will tend to become implementation-specific. One approach is 
to provide high level I/O facilities and leave it to the system 
implementor to provide the low level, system-specific part. 



www.manaraa.com

Languages and Their Importance 151 

9.6 FUTURE LANGUAGES 

So far only imperative languages have been discussed. Declarative 
languages, which include relational languages (e.g. PROLOG) and 
functional languages (e.g. Hope) are a new approach to the computer 
solution of problems. They are problem-oriented and are currently 
somewhat inefficient computationally. However, the advent of fifth­
generation hardware will see this problem diminish. Perhaps the best 
known declarative language is PROLOG which stands for 
PROgramming in LOGic. Unlike other languages, which are formed 
out of functions, a PROLOG program is made up of a sequence of 
relations or assertions and rules about a subject. These form a data 
base of information about a subject that can be queried or added to. 
For example some assertions are: 

is-functional (Hope) 
is-logic (PROLOG) 

An example of a rule is: 

x is-declarative if (either x is functional or x is logic) 

Functional languages manipulate functions rather than data and 
combine primitive functions to form a final function, the program. 
This program is then applied to the input data to produce the output. 
One consequence of this approach is that no variables are required. 
An example of a functional programming language is Hope (named 
after Hope Park in Edinburgh). Each function is represented by a set 
of equations that together will provide a result for the whole range of 
functional arguments. A program is simply a hierarchy of these 
functions together with a simple invocation of the highest level 
function. Hope allows the programmer to define specific (or polymor­
phic) data types that are checked by the compiler. These types allow 
for the creation of functions that can be applied to more than one type 
of data, for example a routine that can set numbers, characters, strings 
or records. 

As an example of Hope one can define 'max' in the following way. 
Like Pascal, Hope is strongly typed. The function definition comes in 
two parts. First is the declaration and then one or more recursion 
equations. First one declares the argument and result types: 

dec max : num# num ~ num 



www.manaraa.com

152 Engineering Quality Software 

dec, is a reserved word signalling a declaration. Here the two numbers 
are arguments which return a single number as a result. 

The next part of the declaration gives the types of the arguments. 
Integers are of the predefined type, num. Read # as 'and a' and read 
-+ as 'yields'. Max only needs one recursion equation to define it: 

- - - max(x, y) <= if x > y then x else y 

Read the symbol - - - as 'the value of and <= as 'is defined as'. A 
simple program using this max could be: 

max(lO, 20) + max(1, max(2, 3» 

This would yield the result: 

23: num 

Existing functions can be used to define new ones. The following is the 
Hope version of max of 3: 

dec max of 3: num# num# num -+ num 
- - - max of 3 (x, y, z) <= max(x, max(y, z» 

Logic and functional languages are likely to lead to the solution of a 
much larger class of problems in the near future, not just in so-called 
expert systems but over a much wider field of application. 

9.7 COMPILER EVALUATION 

The greater emphasis placed on the use of high level languages, 
together with efforts to standardise such languages, has led to the 
production of validation suites for languages. 

The use of high level language, whilst conferring many benefits on 
the development and maintenance of software, has one important 
drawback. This is that the software developer becomes dependent on 
the skill and accuracy of the compiler writer to generate machine code 
which represents his actual intentions. Also, because of the demands 
of portability, it is important that software need not be rewritten 
purely because of transfer from one machine to another. Since the 
development of COBOL, the need for language definition standards 
has been recognised and, more recently, these have been developed 
for Pascal, Modula 2 and Ada. Not only are these validation suites 
useful for the developer but they enable the end-user to specify their 



www.manaraa.com

Languages and Their Importance 153 

use and thus be assured of a higher-quality product. The idea behind 
the validation suites is not just to exercise a language for conformance 
to a standard, but to provide deviance checks. Some suites look at 
quality and performance factors (e.g. speed of compilation). The 
development of such validation suites is difficult and they need to be 
under constant review and extension in order to be effective and meet 
the needs of users. 

A measure of the interest which is being shown in such suites can be 
judged by the fact that no Ada compiler can be so-named unless it 
successfully passes the validation suite tests. The US government now 
requires that all Pascal development done on government projects uses 
a validated Pascal compiler. 

Where it is intended to use either a language for which no formal 
standards exist or a language with no validated compiler, then it is 
essential that as full as possible an appraisal of the compiler and 
language be carried out, as soon as possible. Once implementation has 
begun it is too late to change course and restart the project. It can be 
argued quite strongly that if a hardware manufacturer chooses to 
ignore a language standard, then doubt should be cast on his ability to 
provide and maintain the services necessary for a software 
development. 

9.8 CURRENT LANGUAGES 

With standardisation efforts prominent and the development and use 
of Ada gaining momentum, it is worth while considering the languages 
currently available and their areas of application. 

9.8.1 Procedural Languages 

Ada 
Ada grew out of the realisation that, in defence software development 
in the United States, many different languages were in use. No 
standard existed for defence work, particularly for embedded real time 
systems. The language was selected in 1979 and a draft ANSI standard 
produced in 1980. The 1983 version is proposed as an ISO standard 
and compilers are available for a number of host machines including 
the DEC VAX, although many more are in preparation. Current 



www.manaraa.com

154 Engineering Quality Software 

compiler problems include: 

Unreliability 
Quality of the object code 
Inefficient tasking 
Slow compiling. 

Improvements will follow but it is likely that Ada compilers will always 
consume more computing power than others. Nevertheless this will be 
far offset by gains in programmer productivity. 

In particular, Ada addresses the needs of real time systems, 
specifically from the point of view of security. Ada is a strongly typed 
language with facilities for 'information-hiding' and is strongly biased 
towards top-down implementation. Some critics have viewed the 
language as over-complex thereby making it difficult to verify. 

The verification problem has to some extent been addressed by the 
production of Ada sub-sets, however there has as yet been no 
agreement from the Department of Defence that such Ada sub-sets 
can exist with the label 'Ada'. The avionics industry in particular has 
identified many shortcomings in Ada which the use of a sub-set would 
overcome. However in the areas of performance, where speed of 
operation is paramount, assembler is still likely to be used. 

Pascal 
Developed from Algol in the 1960s and 1970s, and originally intended 
as a language for teaching purposes, Pascal has grown in recent years 
to become a full development language. It was designed to teach a 
top-down approach to system design and programming, whereby 
nested subroutines reflect a successive subdivision of the system into 
subsystems and modules. Hence, the term 'block-structured language' 
is often used. It is now one of the most popular languages, particularly 
for microcomputer programming. 

The introduction of an ISO/BSI standard in 1983 and the develop­
ment of a Pascal validation suite has given the language a major boost. 
It must be recognised, however, that it still has many deficiencies and 
it is not unusual to find subsets of the language in use so as to avoid 
the difficult features. Processors for the ISO standard are available for 
most systems. 

Modula2 
Modula 2 grew out of the work done by N. Wirth on Pascal and is 
intended by him to correct some of the problems identified in Pascal, 



www.manaraa.com

Languages and Their Importance 155 

and also to achieve the same goals as Ada but within a simpler 
framework. All Modula 2 programs are made up of separately 
compilable modules, each of which therefore contains details of the 
external and internal objects. It is thus a highly readable language. 

With a standard for the language being imminent, Modula 2 is likely 
to be used by many real time software developers who either want to 
tread the path to Ada carefully or view Modula 2 as sufficient for their 
needs. A draft standard is anticipated shortly. 

C 
The C language has come to prominence in tandem with the greater 
use of the UNIX operating system. UNIX is almost entirely written in 
C and thus is seen by many as the language to use for writing programs 
to run on UNIX. C is best described as a system language which allows 
access to features which are usually only visible to assembler lan­
guages. C is a structured language with a slightly unusual syntax and is 
much favoured by programmers. However, C, like Pascal, has many 
deficient and unsafe features and its use must be constrained. It is thus 
not recommended for safety critical software. 

FORTRAN 77 
FORTRAN now dates back nearly 30 years and yet is still in 
widespread use. Originally a completely unstructured language, the 
'77' version introduced various structured concepts. FORTRAN is 
most widely used for scientific/engineering applications, although it 
has been used successfully in other fields (e.g. financial applications). 

CORAL 66 
This has been the preferred language of the UK MOD for real time 
embedded systems for many years and has been widely used for 
industrial and commercial control systems. It is due to be replaced by 
Ada in 1987. CORAL 66 will not disappear but Ada will be preferred. 

COBOL 
COBOL still dominates the commercial applications field. It was 
originated by the US DOD. Attention was paid to good data 
management and fast I/O. 

BASIC 
Beginners' All-purpose Symbolic Instruction Code is very widespread 
and is available on all small computers. It has become the universal 



www.manaraa.com

156 Engineering Quality Software 

language of engineers and others who wish to do their own program­
ming. Many versions exist, all of which permit instructions to be 
input for immediate response. Its disadvantage is that it is not a 
structured language and one is free to commit all possible coding 
errors. 

ALGOL 60 
This was the first truly structured language and was developed to 
provide all the now accepted language structures necessary for the 
construction of good programs. CORAL 66 in particular was heavily 
based on ALGOL 60. 

APL 
Standing for A Programming Language, this IBM developed language 
uses special symbols and keyboards to provide a very powerful 
language for modelling. 

PL/1 
Another IBM language which was originally developed to be the 
'complete' language. Somewhat like ALGOL it is still used in IBM 
systems. PL/M is the microprocessor version. 

9.8.2 Declarative Languages 

PROLOG 
The appearance of PROLOG in the last few years has been mainly 
connected with the growth in interest in expert systems. PROLOG is 
seen as a good vehicle for the development of such systems although 
its sphere of application is in fact much wider. As higher-performance 
computers appear PROLOG is likely to see even wider use in the 
computing community. 

LISP 
This was developed by John McCarthy at MIT in the late 1950s and is 
a highly specialised language for the area of artificial intelligence (IT). 
Since declarative languages are concerned with difficult ill-defined 
problems, the task of the programmer is not simply coding a solution 
but rather of exploring a problem and its possible solutions. LISP was 
thus designed as an interactive language, and a program interacts with 
the programmer to support experimentation with new ideas. Any LISP 



www.manaraa.com

Languages and Their Importance 157 

implementation is supplied with aids for program development such as 
editors. 

Hope 
This was described in 9.6. 

FORTH 
This was designed by Charles Moore in the 1960s. FORTH is difficult 
to classify into these Chapter sections. It is a little like LISP but 
also contains features of assembler. The price associated with high 
level languages is the relative inefficiency of the compilers which need 
to take account of many hardware architectures. Assemblers are, on 
the other hand, specific to a processor and can be more efficient. 
FORTH steers a middle course between these extremes. 

A key feature of FORTH is the stack which, unlike most high level 
applications, is controlled directly by the programmer. This language 
offers a high degree of interaction for the programmer together with 
fast execution speeds. 

9JU Object Oriented Languages 
This is another group of third generation languages and includes one 
called SMALL TALK. 

9.8.4 Fourth Generation Languages 
Fourth generation languages evolved through a need for commercial 
programming environments which would achieve greater productivity. 
Most fourth generation languages are associated with specific data 
bases although the emerging standard SQL (Structured Query Lan­
guage) is now available with most databases. Other well known 
languages include MANTIS, CICS and FOCUS. 



www.manaraa.com

Chapter 10 

Aspects of Fault Tolerance in 
Software Design 

A frequent misconception is that the elimination of errors during 
design is the sole factor in achieving quality software. This is too 
simplistic an assumption. In practice all software is likely to contain 
residual faults, albeit at very low levels, after extensive debug and 
quality activities. Compare, therefore, two safety systems, one of 
which has some low level of unknown residual faults and another 
which has double the number. Assume that the code having the 
greater number of faults has been carefully structured and limited in 
its ability to access variables and code in such a way as to restrict the 
propagation of errors. Assume, also, that there are a number of error 
check routines in the code which enable the program to reinitialise at 
known acceptable values when an error is detected. If, in addition to 
these features, the safety system and its software are designed in such 
a way that individual failures do not cause total loss of function, then it 
will at least continue to offer a degraded level of protection. An 
example of the latter would be a fire protection system which measures 
more than one parameter (i.e. UV light, smoke, rate of temperature 
rise). The interpretation of each type of input, and the generation of 
the executive output action, could be dealt with by separate parts of 
the hardware and software. This fault-tolerant type of design offers a 
far higher level of integrity than the system which, despite containing 
fewer faults, implies worse consequences in the event of failure. 

There are many hardware design and system configuration features 
which have a direct influence on software reliability. The available 
strategies for achieving fault tolerance are described in the following 
sections which are summarised in Fig. 10.1. 

158 



www.manaraa.com

Aspects of Fault Tolerance in Software Design 

PREVENT OR 
SUPRESS 
(10.2, 10.5 
and 10.6) 

FAULT TOLERANCE 

I 
AIM TO MEET SPECIFICATION IN 

PRESENCE OF FAULTS 

I 
DIVERSITY 
(10.1) 

Fig. 10.1. 

I 
ERROR DETECTION 
(10.3.1) 

ERROR CORRECTION 
(10.3.2) 
(10.4) 

10.1 REDUNDANCY, DIVERSE SOFTWARE 
AND COMMON-CAUSE FAILURE 

159 

The most frequently used technique for improving system reliability is 
redundancy. Simple reliability mathematics leads to the conclusion 
that this will achieve several orders of improvement whereas, in 
practice, the situation is not as simple. Figure 10.2 shows a triplicated 
software system with some output being voted in order to achieve 
two-out-of-three redundancy. That is to say, any two correct inputs to 
the voter will result in a correct output. Hence, one of the triplicated 
software equipments may fail without detriment to the system func­
tion. Assume that the hardware failure rate of each equipment is 100 
per million hours (approximately one failure per annum) and that a 
failed equipment is out of service for, on average, ten hours. The 
conventional formula for system failure rate is shown in Fig. 10.2 and 
suggests an improvement of two orders of magnitude. Consider, 
however, that for every 100 failures of a single equipment, just one is 
of such a nature that it occurs in all three. It is necessary, then, to add 
a series element to our reliability block diagram as shown. The failure 
rate associated with it is estimated as 1 % of three times the individual 
failure rate. The effect, of course, is to swamp the effect of the 
redundancy. This phenomenon is known as common-cause failure. 

Clearly, any software fault in the presence of simple hardware 
redundancy will represent a common-cause failure since the identical 
program will have been installed in each equipment. Common-cause 
failure is thus a problem in complex software systems. Recent surveys 
have shown that the number of common-cause failures due to software 



www.manaraa.com

160 Engineering Quality Software 

- r--

- r--

6 X "A2 x MDT = 6 x 10-7 10/0 x "Ax 3 = 3x 10-6 

Fig. 10.2. 

in real time redundant systems is generally greater than for any other 
group. Some typical redundant arrangements are: 

Two channels with a comparator. If the two channels do not agree, 
then processing cannot proceed since there is no determination of 
which channel is healthy. An alarm or shut-down condition could then 
be initiated. In this case the overall reliability may be less than for a 
single channel since twice the number of failures will be likely. On the 
other hand, safety is enhanced since, for a hazardous failure mode, 
both channels need to fail. 

Two channels with self -test. Each channel is subject to a periodic 
self-test initiated within the software. The most realistic type of test 
involves temporarily disabling a channel's output and then injecting a 
simulated signal to the input. In this way the function can be verified. 
If a single channel fails the self-test it can be declared unhealthy. 
Depending on the safety philosophy, the system can either revert to 
single-channel operation and inform the operator that there is reduced 
integrity or suspend processing. The self-test has to be thorough since 
error states which escape detection will cause system failures. 

Three channels with two-out-of-three voting. An expensive alterna­
tive which compares three solutions and can permit one out of the 
three to become unhealthy. This solution can increase both safety and 
reliability due to the two-out-of-three redundancy which applies to 
both hazardous and spurious failure modes. 



www.manaraa.com

Aspects of Fault Tolerance in Software Design 161 

One approach to the common cause failure problem involves 
software diversity, which is a particular form of redundancy involving 
the design and coding of separate software for each of the replicated 
channels. 

This is sometimes called N version programming where two or even 
three separate designs are implemented. Where there are two or more 
channels, circuitry and/or software has to be designed in order to 
decide which is the healthy channel in the event of an error. With 
three channels, a two-out-of-three voting arrangement can be 
employed. 

Since diverse software is obtained by carrying out separate design 
and coding activities for the replicated channels, this will involve one 
or more of the following features: 

Different algorithms. 
Different storage media. 
Different CPU architectures. 
Different supply voltages. 
Different CPU clock rates. 
Different languages 

Software diversity is extremely expensive and is unlikely to be 
applied except in highly hazardous applications such as nuclear or 
aerospace equipment. It is not, in any case, a total solution to the 
problem. We have already seen that a significant source of software 
faults is the activity of stating the requirements specification. As a 
result identical faults can propagate through each of the 'separate' 
design activities and manifest themselves in all the channels. Further­
more, even if the requirements were 'perfectly' stated, the designers in 
each team will surely have learned their profession via similar means. 
They will have accumulated the same thought processes and design 
techniques and read the same books. It is hardly surprising then that 
they implement the requirements using very similar code. Recent 
studies of this technique have revealed that the incidence of software 
common-cause failures is reduced but certainly not eradicated by this 
expensive dual (or triple) processing method. 

10.2 ERROR PREVENTION 

A number of design features involving both hardware circuitry and 
software techniques can contribute substantially to the system re-



www.manaraa.com

162 Engineering Quality Software 

liability. Some of these features prevent faults from occurring in the 
first place and others improve the fault tolerance of the system so as to 
render them non-critical. 

10.2.1 Electromagnetic Interference (emi) 
Electromagnetic interference is a significant problem with program­
mable systems. Screening and buffering techniques are useful and 
varied tests should be carried out. These should include passing 
interrupted current through loops close to the equipment and electro­
static discharge on to equipment surfaces. 

Power supplies should be designed to resist mains-borne inter­
ference and transient spikes. In addition, the program should cater for 
power-fail recovery routines in order that the processing can recover 
from short-duration losses of power. The use of separate, preferably 
diverse, power supplies for each channel is essential, otherwise the 
power supply failure rate will swamp any improvement which may 
have been gained from redundancy. 

Tests for resistance to emi include: 

(a) Variation of supply frequency. 
(b) Variation of supply voltage. 
(c) Supply interruption (up to 500 ms). 
(d) Spikes on supply (in kV orders). 
(e) Electrostatic discharge on to surfaces (c 20 k V). 
(f) Electromagnetic radiation (VHF to UHF up to 10 V 1m). 
(g) Ionising radiation. 
(h) Electromagnetic radiation from high-voltage spikes in close­

proximity cable. 

10.2.2 Hardware Design and Architecture 
Faults in one programmable device should not be capable of affecting 
another. Protection by means of buffers at inputs and outputs is 
desirable since it prevents faulty ports from pulling other devices into 
an incorrect state and helps to contain the error, thus minimising its 
effect and aiding diagnosis. 

The input and output ports of solid-state devices usually fail to a 
permanent high or low condition. Circuit design can achieve better 
reliability, from a hazard point of view, by ensuring that failures are to 
a fail-safe condition. For example a comparator circuit should be 
designed to fail to a 'no comparison' state which is then detected as an 
error. 



www.manaraa.com

Aspects of Fault Tolerance in Software Design 163 

Memory should have adequate spare capacity to cater for expansion 
and overload eventualities. In the same way processor speeds and bus 
sizes should take account of future requirements. 

Experience indicates that a large proportion of failures, from system 
integration and test onwards, result from timing problems of interac­
tion between the software and the hardware equipment which it is 
controlling. Generous timing tolerances can be consciously specified 
during both hardware design and software writing so as to minimise 
this problem. It is not possible, of course, to foresee all the possible 
combinations of real time inputs and software states and it will still be 
necessary to uncover many of these faults by extensive and imaginative 
test procedures. 

Also, graphics and human interfaces will have a significant influence 
on system reliability since they will influence the responses made by 
operators to various system states. 

The previous paragraphs address some main features of design 
tolerance but the checklists at the end of this chapter suggest some 
additional areas for review. 

10.3 ERROR IDENTIFICATION AND CORRECTION 

Whereas the previous section dealt with design features which prevent 
the generation or propagation of errors, this section deals with their 
timely identification and correction. 

The timely display of fault and error codes is a powerful aid to both 
reliability and maintainability because it helps the operator to recover 
from situations which, although not total system failures, might 
otherwise propagate in such away. 

10.3.1 Error Detection 
This is achieved by a number of techniques. 

Watchdog timer techniques involve using the processor clock to 
monitor outputs to verify that they are not stuck in one state. Unless it 
receives a reset within a predetermined period it will halt the 
processing. Many watchdog timers only require resetting within a 
loosely defined time and the result is rarely fail-safe. The technique 
will pick up a significant number of faults providing that the design of 
the watchdog is adequate, which implies an adequate understanding of 
the likely failure modes in the first place. The timer itself can be 



www.manaraa.com

164 Engineering Quality Software 

periodically reset, thereby adding an element of sequence checking to 
its capability. It can also cater for endless loops by ensuring that 
defined points can only occur between two watchdog signals. 

A large proportion of the hardware in a programmable system 
consists of memory. It is possible to check the state of a memory by 
writing a known bit into each location and then checking that it can be 
reread. This walking bit technique will minimise software corruption 
faults by flagging up failed memory. In the case of ROMs checksum 
techniques are needed which will verify the contents (which should not 
change) against predetermined checksum values. 

The relay runner technique involves the setting up of a control 
variable which is incremented by known amounts at defined stages in 
the program. Its value, at any stage of execution, is thus predictable 
and if the value is incorrect there is evidence that an incorrect path has 
been implemented since the last satisfactory check of the variable. 

Another technique is the use of code which effectively carries out 
the function of built-in test equipment. More sophisticated than the 
above-mentioned watchdog, it examines the state of the program and 
makes diagnostic judgements (designed in by the programmer) which 
enable instructions either in the form of codes or English language to 
be output to the user. 

10.3.2 Error Correction 
An extension of this philosophy is to provide code which can, having 
diagnosed that an error has been generated, correct the value or 
values in store so as to effect a recovery. The simplest example of 
error detection software is the parity digit, whereby an additional digit 
is included with some value. The binary value of the parity digit is set 
according to the value of the sum of the digits comprising the variable 
in question. If additional redundant information is provided it is also 
possible to deduce the bits which are in error and an algorithm can be 
designed which corrects them. More sophisticated checksum tech­
niques have been developed from this idea. 

Error detection and correction is thus a form of redundancy, not 
through hardware replication but by the use of additional code. The 
recovery philosophy is based on checking the acceptability of specific 
results (variables, data, outputs) and, if one of the tests fails, moving 
to an alternative path which will enable the program to recover. It is 
clearly not realistic to check the result of every step (instruction) in a 
program. However, the modular nature of the design will enable a 
realistic apportionment of the checks across the program functions. 



www.manaraa.com

Aspects of Fault Tolerance in Software Design 165 

Each check determines (by using an ELSE command) the next 
instruction. In this way the program is steered either to a recovery 
routine or to the 'no fault' sequence. The recovery sequence must 
contain some form of acceptance test to verify if the program has 
regained a satisfactory state. There are seven main approaches to such 
error recovery: 

(1) Reinitialisation. This involves resetting the system to a known 
acceptable state and reinitialising the processing. Variables are reset to 
predetermined or known good values. The difficulty is deriving 
sufficient information to recreate the state immediately prior to the 
error. Clearly, remembering the state of all relevant variables prior to 
entering each block is far too inefficient. The program must jump to a 
predetermined position where known values and states apply. 

(2) Alternate path. In the case of mathematical routines a second 
path, or try, can be provided. If the result of a particular calculation is 
not satisfactory then an alternative calculation can be performed. 

(3) Recovery blocks. These consist of blocks consisting of an 
acceptance test for the calculation with one or more alternate routines 
which are used if the test fails. 

(4) Exception handling. This consists of identifying conditions 
which are defined as exceptional and which require additional code to 
carry out the processing. 

(5) Memorising executed cases. Here a record is made during 
certification of code of the allowed paths for program execution. This 
information is stored in some way and when the program is executed 
in its real environment the actual execution is compared with this 
allowed set. If an uncertified path is executed then safety action is 
taken. 

(6) Error correcting codes. Here we try to detect and correct errors 
in sensitive information by using different types of code, e.g. Ham­
ming codes. (See Section 10.4.) 

(7) Manual recovery. In the event of failure, control of the system 
is returned to an operator who attempts to control the system rather 
than leaving it to automatic means. 

10.4 DATA COMMUNICATIONS 

The data communications medium between parts of the system or 
between systems in different locations is a source of bit error. Parity 



www.manaraa.com

166 Engineering Quality Software 

and checksum techniques are used to detect and correct these. A data 
bit error rate of 1 E-6 means that one binary bit in 1 000 000 will be 
corrupted. By sending checksum codes far fewer than 1 in 1 000 000 
messages will be corrupted. 

For example, a 112-bit message may contain 96 bits of data and 16 
bits of coded information derived from the other 96. A comparison of 
those 96 bits with the 16, after their receipt at the other end of a 
communications link, permits error correction to take place. The 
simplest method is for the software at the receiving end to request a 
retransmission of the message until the checksum computes correctly. 
In this way only 1 in 2 to the power 16 (65536) of corrupted messages 
will propagate undetected. 

10.5 GRACEFUL DEGRADATION AND RECOVERY 

The whole design philosophy should take account of the need to 
operate in degraded modes. This can only be achieved at the 
requirements level where functional diversity can be specified, levels 
of system function can be defined and the operating requirements 
grouped into categories. 

The software design decomposition should attempt to minimise the 
routes of communication between groups of modules so that errors are 
discouraged from propagating through the system. In this way errors 
are more likely to be confined to single functions or, at most, groups 
of functions. The system may then be able to provide service, albeit at 
a degraded level, by means of other functions. This is of particular 
importance in software systems controlling hazardous processes. 

The incidence of mains-borne interference has already been men­
tioned. It is not uncommon for mains power to disappear for short 
intervals. Power fail recovery routines are part of the software and can 
enable a system to resume normal operation without failing. These 
must be designed in and thoroughly proved during system test. 

10.6 HIGH INTEGRITY SYSTEMS 

The achievement of high integrity in systems is of particular interest in 
the military field where hardware together with its embedded software 



www.manaraa.com

Aspects of Fault Tolerance in Software Design 167 

is required to survive extremely harsh environments and still exhibit 
high levels of reliability. In the early 1980s the UK Ministry of 
Defence began a research programme at the Royal Signals and Radar 
Research Establishment (RSRE) into developing microprocessors for 
such applications. The result has been the VIPER (Verifiable Inte­
grated Processor for Enhanced Reliability) chip. 

The root causes of failure in commercial microprocessors are: 

-Imprecise specification of what is required. 
-Inadequate verification of the gate-level design against that 

specification. 

To overcome these problems the designers of VIPER have used 
formal mathematical techniques both to specify and subsequently to 
verify their microprocessor. By doing this, RSRE have produced a 
microprocessor of proven capability. As has already been pointed out 
however, hardware is only as reliable as the software which drives it. 
In order to achieve the combining of high integrity hardware with high 
integrity software a new computer language called Newspeak is being 
developed which has, as its goal, the production of safe and reliable 
programs. 

The chip has been designed to form the main component of a 
self-checking computer module. Such a module would incorporate two 
VIPER chips, one operating as the active processor, able to read and 
write to the data bus, and another (monitor) processor which would 
only be permitted to read from the data bus. It incorporates a bank of 
comparison logic so that if illegal operations are attempted the 
processor stops and remains in that state until RESET is asserted. 
Also any discrepancy between the two processors can be quickly 
detected and execution halted. Details of the cause of any halt in 
execution are recorded in an on-chip diagnostic register and, provided 
that the detected error is non-critical to the module's performance, the 
processors can be restarted. 

At present, programs for VIPER are written in a language called 
VISTA which is a structured assembler. Programs written in VISTA 
can be translated into MALPAS and SPADE (see Section 8.3.1) 
intermediate languages and thus SUbjected to static analysis. The 
commercial production of VIPER and the Newspeak compiler will 
herald a new era in high integrity system design and production. 



www.manaraa.com

168 Engineering Quality Software 

CHECKLIST 10.1: DESIGN FEATURES 

General 
(1) Is there evidence that the following are taken into consideration: 

(a) Electrical protection (main-, air-borne); 
(b) Power supplies and filters; 
(c) Opto isolation, buffers; 
(d) Earthing; 
(e) Battery back-up; 
(f) Choice of processors; 
(g) Use of language; 
(h) Rating of I/O devices; 
(i) Redundancy (dual programming); 
(j) Data communications; 
(k) Man/machine interface; 
(I) Layout of hardware; 
(m) Hardware configuration (e.g. multidrops); 
(n) Watchdog timers; 
(0) RAM checks; 
(p) Error confinement; 
(q) Error detection and recovery? 

Overall Software Design 
(1) Were estimates of size and timing carried out? 
(2) Are the timing criteria of the system defined where possible? 
(3) Is the system secure? 
(4) Is it testable as a whole and as subsystems or modules? 
(5) Are there standard interfaces for: 

(a) Data transfer; 
(b) Peripheral interconnections; 
(c) Man/machine communication? 

(6) Is the system designed in such a way that it can be progressively 
built up and tested? 

(7) Have hardware and software monitoring facilities been pro­
vided? Is DMA a design requirement? If so, is the previous 

function affected? 
(8) Have the controls over the data files been stated? 
(9) Is use made of error check software? 

(10) Have the checks on data loss and how to recover the loss been 
defined? 

(11) What is the traffic of data on links and the speed of links? 
Will the links handle the traffic in the required time? 



www.manaraa.com

Aspects of Fault Tolerance in Software Design 169 

Will they give the required response rates? 
(12) Can the internal data highways meet their loading and timing 

requirements? 
(13) Will the system detect and tolerate operator error? 
(14) To what degree can it survive abuse? 
(15) To what degree will it prevent hardware or program errors 

damaging or losing data? 
(16) Will it reconstruct any records that may be lost? 
(17) Are there facilities for recording system state in the event of 

failure? 
(18) Have acceptable degraded facilities been defined? 
(19) Is there a capability to recover from random jumps resulting from 

interference? 

Fault Tolerance 
(1) Are detailed statements of reliability, degradation and recovery 

requirements of the system stated? 
(2) Are there any special characteristics or failure modes of the 

hardware that the software must protect against or avoid? 
(3) Are there syntax and protocol checking algorithms? 
(4) Are interfaces defined such that illegal actions do not corrupt the 

system or lock up the interface? 
(5) Are all data files listed? (There should be a separate list.) 

Hardware Aspects 
(1) Will the user configuration support the software? 
(2) Is a development configuration required? If so, does it need extra 

facilities? 
(3) Is there enough storage and is it of the required access time and 

degree of permanence? 
(4) Are the processors sufficiently powerful and are there enough? 
(5) Are the I/O devices sufficiently tolerant to misuse? 
(6) Are the following adequate: 

(a) Electrical protection (mains and emi); 
(b) Power supplies and filters; 
(c) Earthing? 

(7) Is memory storage adequate for foreseeable expansion 
requirements? 

(8) Are data-link lengths likely to cause timing problems? 



www.manaraa.com

PART 4 

New Management for Software Design 

These last three chapters address various management tools including 
scheduling, forecasting and quality measurement. Section 5 is an 
exercise which will assist the reader in seeing the application of many 
of the techniques described. The book ends with a comprehensive 
glossary. 



www.manaraa.com

Chapter 11 

Software Project Management 

A number of management aspects need to be considered, such as 
estimating methods, audit procedures, recent national quality pro­
grammes and so on. This chapter provides an overview of these areas 
and their relevance. 

11.1 USE OF AUTOMATED TOOLS 

The difficulty of software project management is evident from the 
frequency with which software development projects flounder and 
overrun. This is, of course, partly due to a problem which has already 
been mentioned, that of changing requirements. However, there are a 
number of contributing factors. Perhaps the most important of these is 
the difficulty of measuring the level of completeness of any particular 
software task. 

At the design level progress is viewed as a simple task since design is 
presented in tangible form, i.e. documents. However, when the design 
is translated into code the degree of completeness is less evident since 
the only point at which it is judged is the test. There are intermediate 
stages, such as compiling of the code, but the amount of information 
provided from this is very small. It is therefore evident that some 
measure is required in order to enable the project manager to 
determine just how far a package is on the road to completion. 

Whilst not the total answer, the use of automated tools does provide 
a useful reference point as well as repeatability. As already men­
tioned, the use of automated systems for specification and design 
provides greater visibility to the system and also allows more thorough 
checking for completeness and consistency. 

173 



www.manaraa.com

174 Engineering Quality Software 

At the design level the information available from such systems can 
prove useful in identifying areas where effort needs to be concentrated 
rather than having to treat the whole system equally. 

Once code has been provided, the main validation difficulties arise. 
There are a variety of steps which can be taken to minimise these 
difficulties. Firstly a development environment can be used to monitor 
changes. At a higher level the use of tools such as static analysers, 
coverage analysers and symbolic evaluation all provide valuable 
information about the program. The main point is that automated 
methods provide an independent assessment of the development 
rather than relying on subjective views which invariably lead to 
argument. 

11.2 THE NEW APPROACH TO SOFTWARE QUALITY 

The traditional approach to organising software quality takes on one 
of two structures. 

The first is that of an organisational umbrella which provides a 
corporate quality service to the Company. The second is to attach to a 
project or development a separate dedicated quality function purely 
involved in that project activity and nothing else. 

Both arrangements can make use of the established quality system 
and both may require project specific procedures or standards to be 
developed to cope with out-of-scope areas which might arise. The 
main reason for structuring quality systems in this project fashion is to 
provide a reporting mechanism which bypasses the organisational 
structure and allows rapid problem reporting to a higher level of 
management than would otherwise be the case. This, in theory, allows 
problems to be resolved more rapidly. 

Whilst most organisations find the approach effective, the result is to 
put the quality function into a box and isolate it from the areas where 
it can be most effective. The result is a view of quality as part of the 
'production process' whereby it is bolted on in the same way as other 
components. This reduces the level of quality finally achieved in the 
product. 

It applies equally well to hardware and software that a typical 
project organisation separates the quality function and leads to the 
idea that responsibility for quality matters lies elsewhere. The reality, 
of course, is that each member of the development team has an effect 
on quality and it is in this area that improvements can be made. 



www.manaraa.com

Software Project Management 175 

One of the main problems of establishing a quality system is that the 
traditional approach tends to erect barriers between the development 
team and the quality function. Quality must be accepted as part of the 
working practice and only then will its level be raised. This is largely a 
matter of motivation in that the average programmer or designer only 
sees the task in narrow terms. He will view the task of programming 
and designing within a localised framework rather than in terms of the 
whole project. Only when the team members look at problems, and 
their solutions, in overall terms will their perception of quality and the 
means of incorporating it into the product be achieved. 

This is, in part, an educational problem in that most software 
developers are never asked to consider the quality aspects of develop­
ment, let alone how the development methods should be modified in 
order to assure built-in quality. 

One possible approach is to introduce into the project the concept 
of overall quality involvement. This involves the idea of quality circles, 
now popular in manufacturing industries. The idea is to make all team 
members responsible for quality and thus distribute the function 
throughout the project rather than identify a single responsibility. By 
involving the team in this way, their perception and appreciation of 
quality are enhanced. In some respects this is an extension of the 
design review idea where a group discusses, in some formal way, the 
design as it stands at a particular stage. By extending the principle to 
all activities (including testing), greater emphasis can be focused on 
quality-related aspects. The general level of motivation towards 
achieving better quality is improved since team members then have a 
far greater understanding of the reasons for it and the benefits which 
will result. 

11.3 SETTING UP AN AUDIT 

Audit is a worthwhile activity and should be used both within an 
organisation and as a method of controlling vendors. 

11.3.1 Objectives of the Audit 
(a) To establish, by reviewing the techniques described in this 

book, that there is adequate control over the software design 
process. 



www.manaraa.com

176 Engineering Quality Software 

(b) To establish that standards are being used for the documenta­
tion and production of the software. 

(c) To assess, aided by the checklists, the comprehensiveness of the 
controls and the integrity of the product. 

(d) To. seek evidence that the standards are being applied and 
periodically reviewed. 

(e) To establish that there are adequate controls over test and 
integration. 

(f) To establish that there is a real capability, on the part of the 
team, to implement the requirements into a system. 

(g) To establish that strict configuration controls exist. 
(h) To establish that there is control over bought-in software. 

11.3.2 Planning the Audit 
It can be seen, from the contents of this book, that the number of 
potential questions which could be addressed is vast and, for that 
reason, it is essential to plan the strategy of an audit. Since it will not 
be possible to address every feature that affects software quality it will 
be prudent to select a sample based on the critical features of the 
product and any known problem areas experienced by the designer. 
The following information must be available in order to formulate a 
plan: 

(a) Vendor details. The range of products and services. A summary 
of any approvals which he has from other customers or authorities. 
The management and quality structure. The names of executives 
responsible for design and quality. The main customers. The number 
of employees in hardware and software design, test, quality, etc. The 
existence of any standards such as BS 5750. 

(b) Product details. The requirements specification. A functional 
summary and environmental details. The range of hardware with type 
and quantity of memory. The language used. The current stage of 
development. 

(c) Audit team and schedule. A list of persons involved with their 
areas of responsibility. In determining the skill requirements, the 
program language and equipment type are relevant. 

(d) Documentation summary. A complete list of specifications such 
as are described in Chapters 4 and 5. Prior knowledge of the 
documents and their structure will allow more time to concentrate on 
evaluating their use and the state of the project. A list of documents 



www.manaraa.com

Software Project Management 177 

should be prepared and a perspective of the hierarchy obtained by 
preparing a large chart such as was shown in Chapter 4. Any 
documentation standards or guidelines should be studied thoroughly. 

(e) Checklists. A copy of the appropriate checklists from the 
previous chapters. These can be marked up to indicate the sample of 
questions which have been decided upon for the audit. In Chapter 4, 
one of the checklists is a specific sheet designed for each module. 
Sufficient of these for the number of modules to be audited should be 
available. 

11.3.3 Implementing the Audit 
Include the vendor's quality organisation in the documents and insist 
on a quality manual and quality plan. Look for evidence that these are 
not simply for show. There is a tendency at present to pay lip-service 
to software quality and often procedures are more advocated than 
practical. Look for hard evidence of their application. 

The first aim should be to review the documents vertically to 
establish that requirements are fully and correctly reflected down 
through the specifications to the code modules. Module definitions 
should be audited for conformance to coding standards, layout, 
cross-referencing and functional performance. It will probably be 
necessary to take samples, in which case: 

(a) Establish how long is to be spent on the activity and thus how 
many modules are to be audited. 

(b) Allow adequate time for study of the requirements and func­
tional specifications. This should not be skimped in order to 
include a few more modules. 

(c) Choose a sample of modules having regard for the critical 
functional areas of the equipment. The sample need not be 
random. 

(d) Choose a sample of changenotes and trace each through the 
system. 

Review with the project manager the areas which you intend to 
audit and examine the schedule for timing of design reviews and tests. 
The audit is unlikely to be a single activity but spread over the various 
design-cycle activities. In the early stages the specifications can be 
audited. Later the coded modules can be examined, followed by the 
design review and inspection/walkthrough activities and eventually 
test and integration. 



www.manaraa.com

178 Engineering Quality Software 

In an audit which extends over more than one day it is a good idea 
to present the problems daily to the vendor for discussion. For 
example, each day's findings could be copied to the vendor at 4.00 pm 
and jointly reviewed at 10.00 am the next morning. In this way timely 
remedial action can be initiated on the spot. 

The sequence should be: 

(1) Plan. 
(2) Establish schedule of activities with vendor. 
(3) Prepare checklists, specifications and standards. 
(4) Audit. 
(5) Initiate remedial action with vendor. 
(6) Prepare audit report. 

An important feature is that each and every deficiency should be 
written down and agreed, at the time, by everyone involved. All 
deficiencies must be based on factual evidence. 

11.3.4 The Audit Report 
Where the audit is spread over a long period then interim reports 
should be prepared after each visit. At the end of the audit a full 
report is required consisting of: 

(a) Persons involved and their roles. 
(b) Each of the checklists. 
(c) Written report on each audit item. 
(d) List of deficiencies and remedial action agreed. 
(e) Actions taken and modifications which resulted. 
(f) Summaries of design reviews. 
(g) An overview and recommendations (no more than one page). 

11.4 ESTIMATING 

11.4.1 Seeking Metrics 
The process of developing software is not just about coding-it 
involves documentation, design, programming, file building, testing, 
training, quality assurance and, above all, management. The develop­
ment of software has been characterised by cost overruns and schedule 
slippage. Since the level of investment in software is increasing all the 



www.manaraa.com

Software Project Management 179 

time, managers need the answers to key questions such as 'How much 
will it cost to develop?', 'How long will it take and with how many 
staff?', 'What levels of productivity can be expected?' All of these 
questions, in principle, can be answered with a single quantity. The 
question is-can we provide such a number, or metric, for software? 

A reasonable approach might be to study the many software 
projects in the past, gather data and thus set up models which, in 
theory, should permit the prediction of the parameters required and 
thus answer the above question with some degree of accuracy. The 
costs, manpower levels, durations and so on could thus be predicted. 

A starting-point might be, for example, the number of source code 
statements generated per man-month. Every manager knows, how­
ever, that just because an average programmer generates ten lines per 
day, ten programmers will not necessarily generate 45 000 lines in two 
years. These are, of course, statistical averages and it must not be 
assumed that one particular programmer will perform in that way. The 
single productivity figure does not take into account the complexity of 
the given task, the spread of abilities in the team, interface problems 
and so on. Also, as has been said, software is not simply the 
generation of code. Clearly the amount of data and the number of 
parameters in these models must be very large in order even to 
approximate realistic values. How do the actual techniques already 
generated cope? 

11.4.2 Actual Methods 
The major current software packages which attempt this scheduling 
model are: 

SLIM. 
GECOMO. 
PRICE S. 
ARTEMIS. 

The attraction of better control of projects via support tools is clear. 
Several attempts at providing them have been made. 

SLIM (Software Life-Cycle Management) provides cost, time, 
personnel and machine estimates for developing computer software. 
Its accuracy has been validated using over a thousand different 
projects, in both the USA and Europe and covering a wide range of 
applications. The basis of SLIM is the work by Laurance Putnam of 
Quantitative Software Management Inc. It can be used from the 



www.manaraa.com

180 Engineering Quality Software 

beginning of a project and provides information on productivity, 
minimum cost and time forecasts, risk profiles and manpower esti­
mates. The question arises, 'How accurate are the values provided by 
such models?' 

A number of useful studies and user surveys have revealed quite a 
variation in response. Whilst some projects have certainly benefited 
from the use of these tools, some users have reported as much as a 
50% discrepancy in the values produced. It seems that in spite of quite 
large data bases and complicated parametric models it is still possible 
to produce projects which are able to lie outside the boundaries of the 
models being used. 

Perhaps the best point made about these tools is that, used carefully 
throughout a project, they provide guidance on how various project 
parameters are behaving. Certainly on larger projects (i.e. over 
100 000 source code statements) some benefit is likely from the tools 
and from the disciplines needed to collect and input the necessary 
data. 

11.5 NEW SOFTWARE QUALITY PROGRAMMES 

Awareness of the need for methods of generating quality software is 
increasing. This has resulted in a number of programmes being set up 
for the purpose of researching into methods and spreading information 
about them. The major programmes, worldwide, are described here. 

11.5.1 The Alvey Programme 
This is a UK programme, set up in 1983, to research software 
engineering as well as intelligent knowledge-based systems and VLSI. 
The Software Engineering part has the specific objective of promoting 
high quality and cost-effective software design by addressing: 

Formal methods. 
Software reliability. 
Associated metrics. 
Use of knowledge-based systems. 

The major project is the development of two integrated project 
support environments. These are ASPECT and ECLIPSE. Another 
large project involves attempts to establish quality metrics for quan­
tifying software reliability. The Alvey programme involves active 



www.manaraa.com

Software Project Management 181 

meetings of members which are successful in promoting awareness of 
techniques by an interchange of information and views. 

Unfortunately funding for an extension to this programme has been 
reduced and it seems likely that much of the research instigated will be 
cut short. An Alvey II which is much more specific may evolve or a 
research effort with greater collaboration with other EC countries are 
likely future directions. 

11.5.2 STARTS 
This a UK DTI-funded programme. The letters stand for Software 
Tools for Application to Real Time Systems. Its objective is stated as 
'The development and implementation of a national strategy for 
improving software engineering'. An important feature is the STARTS 
Guide (1984) which provides advice on choosing software tools and 
methods. It is intended to encourage software producers to adopt tools 
and methods likely to improve the quality and reliability of their 
products and is shortly to be updated with a new section on project 
support environments. The existing guide addresses: 

Project control. 
Requirements specification. 
The design process. 
Verification, validation and testing. 
Version and configuration control. 

Reports have also been published on SLIM, PRICE S, ARTEMIS, 
VDM, SOFCHIP, lSD, SDL, SAFRA, CORE and Z. Information 
can be obtained from NCC Ltd, 11 New Fetter Lane, London EC4A 
1PU. 

The two STARTS programmes-now known as Real-Time 
STARTS and IT-STARTS-run in parallel, but there is significant 
cross-fertilisation between the two as well as common technical 
concerns. 

Whilst the approach of the two programmes is different in detail 
(because they address different communities), both are aimed at users 
and suppliers. They achieve their aim of accelerating the use of 
methods and tools: 

'by providing guidance on best practice to in-house developers and 
external suppliers along with information about, and assessments of, 
the best available software engineering methods and tools; 
in Real-Time STARTS, by promoting co-ordinated and constructive 



www.manaraa.com

182 Engineering Quality Software 

demand from purchasers of systems for their suppliers to use the 
best software engineering practice; 
in IT-STARTS, by involving the user more productively in the 
development process and by increasing awareness amongst senior 
management. ' 

A rapidly expanding programme of publications, projects, and 
events-including reference guides, handbooks, case studies, training, 
seminars, conferences, and user groups-ensures that the STARTS 
message is communicated to the widest possible audience. 

Both programmes are supported and co-ordinated on behalf of the 
Department of Trade and Industry by Secretariats within the Software 
Engineering Division of The National Computing Centre. 

11.5.3 ESPRIT Programme 
The European Strategic Programme for Research and Development in 
Information Technology was set up by the EEC in 1984. It supports 
projects spanning industry, university and research organisations, 
covering: 

Advanced microelectronics. 
Software technology. 
Advanced information processing. 
Office systems. 
Computer integrated manufactured office systems. 

The software technology projects address all stages of the design-cycle 
and are concerned with the development of tools and methods, in 
particular: 

Integrated programming support environments. 
Formal design methods. 
Fast prototyping. 
Reusability of software 'components'. 

A major project in this subgroup is REQUEST which deals with 
'measures for software quality and the production of a database'. 

11.5.4 EWICS TC7 
The European Workshop on Industrial Computer Systems was set up 
as an EEC-funded group of committees of which TC7 is now the main 
activity. TC7 addresses the safety, security and reliability of industrial 



www.manaraa.com

Software Project Management 183 

real time computers. The work depends on the voluntary and active 
participation of the members and the main activity was the production 
of four guidelines on: 

(a) Systems integrity: 
Safety and reliability in the working environment. 

(b) Software quality and metrics: 
Identification of software metrics correlating with the safety 
features. 

(c) Design for system safety: 
Design- and fault-tolerant techniques. 

(d) Reliability and safety assessment: 
Methods of assessing design integrity. 

11.5.5 CEC Collaborative Project 
This European programme, from 1979, was set up for the 'assessment, 
architecture and performance of industrial PESs with particular 
reference to robotic safety'. The participating organisations were: 

UK: HSE, NCSR. 
Germany: BIA, IP A. 
Denmark: EC, AT. 
France: INRS. 

The emphasis was on industrial robots, NC tools and automated 
warehousing and the seven objectives were: 

(1) To collect safety reliability and classification data on PESs. 
(2) To create a data bank. 
(3) To collect and assess current guidelines. 
(4) To identify areas for work. 
(5) To formulate a framework for guidelines and for their review 

and development. 
(6) To promote guidelines. 
(7) To hold a seminar. 

The PES3 symposium in Guernsey in May 1986 was the fulfilment of 
the final objective. No specific guidelines have been published at the 
time of writing externally to the project although draft documents 
exist. The data collection activity did not involve recording elapsed 
times: hence the failure information is qualitative. 



www.manaraa.com

184 Engineering Quality Software 

11.5.6 SEI 
In the USA, the Software Engineering Institute is funded to encourage 
the transition of modern software design methods from R&D into 
practical industrial and commercial use. The emphasis is on the 
production of suites of software tools for use in the design-cycle and 
projects are encouraged to that end. Some major projects include: 

(a) Assessing existing programming environments. 
(b) Software rights and licensing. 
(c) Education and training courses and workshops. 
(d) Integrating existing tools. 
(e) Evaluating Ada environments. 

11.5.7 MCC Programme 
The Microelectronic and Computer Technology Corporation is funded 
by US industry for the purpose of carrying out R&D into computer 
technology. One of its four areas of interest is the software technology 
programme, whose aim is twofold: 

(1) To develop methods for software quality and productivity. 
(2) To transfer these technologies into the sponsoring organisations. 

11.5.8 SPC 
The Software Productivity Consortium is largely funded by US 
defence contractors. Its main area of interest is the high cost of 
embedded software in mission-critical systems. As a result research is 
focused on: 

( a) Software reusability. 
(b) Prototypes. 
( c) Knowledge engineering for systems development. 

11.5.9 STARS 
Not to be confused with STARTS, STARS (Software Technology for 
Acceptable, Reliable Systems) is a US Department of Defense 
initiative to enhance software technology. The goal of the STARS 
programme is to improve productivity whilst achieving greater system 
reliability and adaptability. The DOD Ada development provides an 
initial focus for the development of a common shareable software 
base. The STARS programme broadens the scope of attention to the 
environment in which software is conceived and evolved. 



www.manaraa.com

Software Project Management 185 

11.5.10 JSEP 
The Joint Software Engineering Programme, based in Singapore, 
currently concentrates on computer aided software development m 
respect of: 

(a) CAD workstation to permit paperless design. 
(b) Processing of natural languages. 

Other areas of research are: 

(c) Software development methodologies. 
(d) Software metrics and quality. 

11.5.11 SIGMA 
This is a Japanese government-funded project to set up a national 
network of computer-linked bureaux, large users and software houses 
to the available software design support tools. Included are activities 
for developing software tools. 

11.5.12 SPP 
The Software Plant Project is a Brazilian programme for aiding the 
industrial production of software. It includes a system of proven 
programs. 

11.5.13 RACE 
A recent EEC programme, Research and development in Advanced 
Communications technologies in Europe, addresses 'common stand­
ards for all forms of electronic communications in Europe'. 

11.6 SOFTWARE SECURITY 

11.6.1 Security Against Data Theft 
There are two ways of preventing unauthorised people from reading 
confidential or sensitive information: 

-by denying them access. 
-by making the files unreadable to them. 

As a first line of defence, one can lock floppy discs away in a safe at 
the end of each day, but with large files, or a large number of smaller 
files, this can be very inconvenient. Then again there are programs 



www.manaraa.com

186 Engineering Quality Software 

where repeated disc access would make this very slow. There are 
devices such as keyboard locks or post fitted locks which may be used 
to deter most attempts at prying but these do not equal the ultimate 
security of locking data in a safe. 

The second method is to make files unreadable to unauthorised 
people by the use of specialised security packages which encrypt files 
before writing to disc, and decode them after reading from disc, and 
before passing them to the user program. These tools may be purely 
software or include add-in hardware cards for the PC. To use one's 
files a password may be required which is then used in a hashing 
algorithm to code or decode the files. Alternatively a dongle, or 
electronic key is plugged into the card and supplies the necessary 
encription code. 

It is important to remember that security measures are only as good 
as one's commitment to use them properly. Passwords are not 
popular and a very short list includes the majority in use. Common 
names and dates continue to dominate that list. 

Essential factors are: 

-Commitment from management and staff. 
-A hierarchy of responsibility to ensure that appropriate and 

adequate measures are taken. 
-A training programme for all staff. 

11.6.2 Security Against Data Loss 
There are various ways of protecting against losing data. The main 
defence is to take copies of all files on a regular basis. Programs are 
not usually copy protected and many software houses recommend that 
backup working copies are made. It is important to: 

-Follow their instructions. 
-Label discs carefully. 
-Store backup and master discs carefully in different locations. 
-Record the serial number of the machine on which each copy of 

the programs is loaded. Do NOT make unauthorised copies. In 
the United States some of the larger software houses have started 
to take large corporations to court for breach of copyright, 
primarily to deter others. 

Personal data files are harder to protect since they will change and 
will need constant copying to keep them current. One must make a 



www.manaraa.com

Software Project Management 187 

cost judgment as to the value of data against the value of time taken in 
protecting it, and take into account the probability of data loss. The 
most common loss of data often occurs when working on a spreadsheet 
and loading another without saving the first. 

There are programs which will overcome thi8-{)ne called 
BOOKMARK regularly saves files to disc either after an elapse of 
time, or after a preset number of keystrikes. This will also protect 
against unexpected power loss. After losing a large spreadsheet, with 
several hours work, most people will soon get into the habit of 
regularly saving their work, and in most packages it is harder to lose 
work without making a definite decision to exit without saving and, 
fortunately, power failures are relatively infrequent. 

If a hard disc is corrupted, or files become erased, or a machine fails 
then one wishes one had backed up the hard disc. There are tape 
streamer systems at a cost of around £500 which will back up an entire 
40M byte hard disc in a single operation. Moving down the list, there 
are programs specifically for backing up files. The most well known 
and widely used is probably 'FASTBACK' which saves the files to 
floppy disc, and can either copy an entire disc, or selective directories. 
It is fast and efficient and at the end of the operation states how long it 
spent copying files, and how long one took changing discs. Usually one 
spends more time than it does. 

'XTREE', at around £35, is another popular package which includes 
back up routines as well as its more widely known file handling. One 
feature is its control of file attributes which means an archive bit can 
be set off after copying each file, but this will be reset when the file is 
next written to. By using this, one can do a selective backup on just 
those files previously written to. The time spent in saving files to disc 
can become tedious, so it is important not to copy more files than 
necessary. If work files and program files are lumped together, life 
becomes much more difficult. 

11.6.3 Viruses 
Much has been written in the press about computer viruses. Many 
articles have been rather too alarmist but there is nevertheless cause 
for caution and a need for awareness rather than panic on the subject. 
So called 'viruses' are rogue programs designed to do some form of 
damage to a computer or communications system. One known type of 
PC virus consists of extra code embedded in the COMMAND. COM 
file which writes itself into every copy of this file that it comes across. 



www.manaraa.com

188 Engineering Quality Software 

If a floppy disc is 'infected' in this way and a program from it run on 
hard disc the virus embeds itself into the COMMAND. COM on that 
hard disc. Putting another floppy disc in the PC causes its 
COMMAND. COM to become 'infected'. One such virus waits until it 
has replicated itself a number of times before doing any damage. It 
then starts a malevolent process, such as destroying all the files on the 
disc. 

Viruses can be embedded in any program, such as a popular utility. 
They can do anything intended from the sort of malicious destruction 
of data described above to something totally innocuous such as putting 
a random dot on the screen. As soon as a particular virus is 
discovered, someone will write a program to detect and 'kill' it. Virus 
programmers are therefore continually looking for newer ways to 
avoid detection. 

There is no cure for viruses but sensible defences include: 

-Being careful where one gets software from. Some 'shareware' 
and software downloaded from bulletin boards have been known 
to be infected. 

-Not using illegal copies of copyright software. 
-Backing up hard disc data and keeping several copies. 

Viruses are, however, rare and there is a hundred times better 
chance of losing data through one's own mistakes. 

11.7 SOFTWARE SAFETY AND LIABILITY 

With the introduction of new laws on product liability and the 
inclusion of software within such laws, an additional burden is placed 
upon the software developer not only to ensure that his software 
functions as well as is possible but also will not provide cause for 
future litigation. As yet no test case has occurred to provide a 
precedent but it is likely that with the increasing use of software within 
critical systems, such as medical equipment, nuclear installations, 
automotive and transportation systems, etc. a case is likely, within the 
near future, which will involve a software 'bug' causing some form of 
disaster. 

There are a number of points arising from this new legislation which 
must be considered carefully by software developers. The first and 
perhaps most pertinent point is whether to remain in software 



www.manaraa.com

Software Project Management 189 

development! If a company, say, views the risks of litigation as too 
great then this should be a serious consideration. It might involve the 
decision to move out of software development altogether or to 
subcontract to specialist software houses the development of the 
critical aspects of a system. Many companies have already taken such 
decisions and given the level of damages awarded and the cost of 
liability insurance, it is a decision likely to be taken by others. 

If a company decides to remain within an area involving the 
development of critical software then it must look carefully at 
all aspects of management and control of software development. 
Many of the techniques and methods listed in this book must be 
considered, particularly formal methods for requirement specification 
since this is the area in which most problems lie. Also the use of 
formal tools for static analysis of software should be viewed more 
seriously, since the benefit of such tools has largely been under-rated. 
One danger is to adopt one of the many emerging CASE tools and 
expect them to solve all the problems inherent in software develop­
ment. This is not so, since such tools have to fit into a framework of 
standards and procedures with good management appreciation of the 
needs of a particular project. Many of the tools available are very 
much 'horses for courses' and must be looked at carefully in the 
context of the system to be developed. 

Thus the development of software in general is becoming more 
difficult from all points of view. The use of any methods which might 
achieve greater reliability and quality has become a priority. 



www.manaraa.com

Chapter 12 

Quality-Can it be Measured? 

This chapter looks at some of the aspects of software quality which will 
receive increasing attention in the near future, 

12.1 BY THE SYSTEM DESIGNER 

It is a frequent claim that 'We produce high-quality products' whereas 
in practice it is not easy to investigate or justify the statement. Quality 
is usually perceived as a relative concept. There is no absolute 
standard for quality: claims are based relative to some perceived norm 
or level against which its features are compared. If there is no 
reference standard the task of measurement becomes well-nigh impos­
sible and since the term is needed for the whole range of commercial, 
industrial and domestic goods the problem is indeed daunting. 

Quality is usually defined by relating it to conformance to specifica­
tion. That is, if a product meets its specification then it is deemed to be 
of acceptable quality (whatever that may imply). However, consider 
the following circumstances which might apply to any product. A 
computer program is written which conforms to specification but which 
contains many GOTO statements, multiple entry loops, little com­
menting and so on. Is it good, because it meets the specification, or is 
it of poor quality for the reasons given above? It could be argued that 
the specification should have called for particular programming 
standards to have been used. In reality, therefore, it is the 'quality' of 
the specification and of the subsequent design which determines the 
product quality. 

It is in this area that the greatest influence can be made by the 
customer specifying such features as programming standards. A 

190 



www.manaraa.com

Quality-Can it be Measured? 191 

problem remains since human judgement is still involved in determining 
some arbitrary measure of quality. 

In software design there is a tendency towards formal methods 
(Chapter 6) which provide greater visibility and traceability and which 
can ultimately lead to some formal metric relating to quality. 
Currently most quantitative methods involve applying metrics relating 
to certain complexity measures (number of paths, etc.). An alternative 
is to examine the outputs of a quality system and consider the number 
of software errors detected. These are still only rough estimates of 
quality because the fact that, in Project A, twice as many errors were 
detected as in Project B does not make it twice as 'bad'. Project A's 
staff might have been more effective in their integration and testing 
and will thus encounter fewer in-service failures. It is thus not simple 
to define a single quality metric. 

A model of the whole life-cycle is necessary which will embrace the 
design-cycle and thus provide the system designer with a means of 
studying the design methods and outputs and of quantifying them. 

12.2 BY THE BUYER 

Ultimately it is the purchaser of the software who must judge, in some 
way, the quality of the system. Whether this is in an arbitrary manner 
or by some qualitative route may not involve the designer but, in the 
end, it is the buyer who will choose. 

Currently most quality systems involve a requirement for vendor 
appraisal. This involves examining the controls and codes of practice 
used by the software developer. One major limitation here is the 
quality of the staff carrying out the audit. A good auditor, who is 
knowledgeable about software practice, will discover far more than a 
good traditional quality engineer. Specific software subject knowledge 
is important when dealing with this type of contract. The only way of 
extending the audit is to use sophisticated tools actually to analyse the 
software. The static analysers described in Chapter 8 are one example 
of recent additional tools. 

12.3 BY MEANS OF METRICS 

Traditionally, the features of software which relate to its quality are 
identified and evaluated qualitatively. The whole of the current 



www.manaraa.com

192 Engineering Quality Software 

software quality approach, described in Part 2, relies on judgements of 
such qualitative characteristics. 

However, it has been a theme of this book that the path towards 
better quality software involves a more formal and objective approach 
to the process of design. Such a trend involves the identification of 
more measurable features. 

Quantitative measures of quality are referred to as software metrics. 
Various measures of size, complexity, structure and programming 
resources are identified and an attempt is made to model the software 
quality by means of these variables. For example, the relationship 
might be established between complexity metrics and errors or coding 
time. 

The two main variables of interest, for which metrics are sought, 
are: 

(a) Errors. The number of code errors or faults per line of code. 
Note that we talk of errors per line rather than per hour. 

(b) Coding time. The total time taken to specify, code, review and 
test modules. 

A key area of interest must therefore be the validation of the 
metrics against actual working systems. Preferably historical project 
data should be used in order to provide objective evidence of the 
relationships. However, this data is seldom collected. 

Major limitations arise from: 

(a) The use of only single dependent variables. A simple model 
might address the relationship between, say, error rate and a 
particular complexity measure. This approach fails to recognise the 
interrelationships and trade-offs between parameters. One designer 
might achieve error-free code by patient documentation and review of 
his code, whereas another might prepare code faster and expend effort 
on debug and test. The resulting error rate might well be the same 
although the metrics are not. 

(b) The use of only a single independent variable. In other words 
only one metric is chosen to model the software performance. 

(c) The assumption of linearity. This assumption has often led to 
the rejection of a metric as a valid indicator of software quality. More 
sophisticated models may be necessary. 

(d) Misuse. Each metric describes a particular feature of the 
software. Judging only on the number of lines of source code would 



www.manaraa.com

Quality-Can it be Measured? 193 

lead to the erroneous conclusion that the use of assembly language is 
more productive than high level language. 

The various metrics fall into four broad groups: 

(1) Code metrics. These address the more easily quantified meas­
urements at the code level. They are, however, not available until well 
into the design-cycle and hence do not provide the complete answer. 
They include: 

Lines of code: 
The number of lines. 

Cyclometric complexity: 
A measure of path and execution complexity. 

(2) Structure metrics. These address the higher levels of design and 
include: 

Information complexity: 
A measure involving data flow and data relationships between 
components. 

Invocation complexity. 
Review complexity. 
Stability. 

(3) Hybrid metrics. Hybrid metrics are modifications of structure 
metrics weighted according to various code-related measurements. 
Three hybrid metrics are: 

Weighted information flow. 
Weighted review complexity. 
Weighted stability measure. 

(4) Programmer-related metrics. 

Number of changes. 
Years of programming experience. 
Mix of programming experience. 
Number of pages of documents. 

Given that correlations can be established between the variables of 
interest and the metrics, then the problem lies in the repeatability of 
the model. It is tempting to assume, having observed a historical 
connection between error and coding time, that a repeatable model 
has been established. This is potentially dangerous, as has been found 



www.manaraa.com

194 Engineering Quality Software 

in the case of the somewhat similar hardware failure rate regression 
models. 

It is credible that the number of factors which influence software 
failure rate and coding time may not all have been identified. In any 
case interrelationships of metrics must alter with such intangible 
variables as personality or project organisation. 

One benefit of even an imprecise model is that those modules being 
more likely to contain the larger numbers of errors can be identified 
and additional review effort applied to them. 

On the positive side, this work is in its early stages and many 
successful predictions are claimed. Only the continued collection and 
analysis of field data will enable these regression models to be 
established. 

12.4 BY FAILURE DISTRIBUTION MODELLING 

Several statistical models have been developed for the purpose of 
estimating reliability. Those described in this section are unstructured 
models in that they treat the software as a black box and attempt to 
model reliability against time. General opinion seems to be that no 
one model is better than the others at predicting reliability. The basis 
for such models is the assumption that failures are statistically 
distributed at random. This is not necessarily supported, since they 
occur only as a result of a specific path being executed coinciding with 
a program fault. 

The problem, which is lightheartedly illustrated in Fig. 12.1, is that 
the data (Monday-Wednesday) may contain the information to 
predict a few days ahead but not necessarily to the time when the very 
low failure rates of interest apply. 

The models are, however, useful as management tools in monitoring 
the effectiveness and the progress of test. They are not predictive 
during design but only extrapolate empirical data. No attempt is made 
to compare the models here but a brief description is given of each. 

12.4.1 Jelinski Moranda 
This model, based on analysis of NASA and US Navy data, assumes 
that failure rate is proportional to the current error content of a 
program, that the remaining faults are equally likely to occur and that 
additional faults are not introduced into the system. 



www.manaraa.com

9 

8 

7 

? 

12.4.2 Musa 

Quality-Can it be Measured? 

Mon Wed 
Tue Thu 

------ - --'---

Time 

Fig. 12.1. Software failures. 

195 

John Musa's model is based on program execution time and assumes 
that: 

(1) Errors are mutually independent and occur at a constant rate. 
(2) There is a representative mix of instructions and functions. 
(3) The MTBF is greater than the execution times. 
(4) Errors are removed when revealed. 

12.4.3 Littlewood and Verral 
This is a Bayesian growth model which estimates the time to the next 
failure by inference from the previous failures. An exponential 
distribution is assumed such that reliability increases, with time, as 
each failure is revealed and corrected. 

12.4.4 Shooman 
In this case empirical data from previous, similar, projects is used to 
provide the values of the constants (e.g. errors per instruction) for a 



www.manaraa.com

196 Engineering Quality Software 

model. Again, a fixed number of errors, which decrease as failures 
occur, is assumed. The model involves an error correction rate 
parameter which, in practice, will vary with the manpower levels 
available to the project. 

12.4.5 Schneidewind 
Another empirically based model which involves collecting data, 
identifying distributions of failure and applying those distributions to 
the parameters of the project in question. Exponential and Weibull 
models are utilised as appropriate according to the way in which the 
failure rate changes. 

12.4.6 Brown and Lipow 
This involves defining the possible combinations of inputs to a 
program in order to model the reliability based on test results on a 
known number of input combinations. Since the complexity of 
software programs implies very large numbers of combinations, it is 
necessary to define subsets to which the model can be applied. 

12.4.7 Seeding and Tagging 
A number of researchers have applied seeding and tagging techniques 
to the problem of estimating failure populations. The method involves 
the injection of known faults into the software. The success rate of 
debugging the known faults is used to predict the total population of 
failures by applying the ratio of successful diagnoses to the revealed 
non-seeded failures. For the method to be successful one has to 
assume that the seeded failures are of the same type as the unknown 
failures and thus equally likely to be revealed. 

12.5 THE PROBLEM OF CERTIFICATION 

The development of computer systems with embedded software has 
one inherent uncertainty. That is the impossibility of proving a 
program's correctness. Whilst it may not be a disaster if a payroll 
system fails (unless it belongs to your employer), the failure of an 
aircraft flight control system is obviously of great importance and 
raises the question of certification. 

The purpose of certification is to ensure that a system has been 
developed and implemented in accordance with accepted practice and, 



www.manaraa.com

Quality-Can it be Measured? 197 

as a consequence, is unlikely to fail and cause loss or injury. With 
hardware systems the certification problem is simpler but, for soft­
ware, difficulties arise from ambiguities, such as what constitutes 
accepted practice. 

At present the closest measure of acceptability is that a company 
operates a strict quality system. Clearly this does not guarantee a 
conforming or 'quality' product, but it is unlikely that more precise 
forms of certification will be available in the short term. 

In the medium term only the use of the formal techniques (Chapter 
7) and automated test methods (Chapter 8) will provide this 
confidence. 

12.6 FAILURE DATA ACQUISITION 

In order to construct meaningful metrics it is important to have 
sufficient failure data to enable the models to be derived. The manner 
of data collection is important but unfortunately there is still very little 
interest shown in collecting detailed information on the performance 
and failures of systems. Furthermore, the metrics and modelling 
methods discussed cannot be validated, let alone generated, without 
adequate field failure data. Ideally, the following data is required: 

(1) A description of the running conditions of the program. 
(2) Date and time of the start of the run. 
(3) Date and time of the incident/failure. 
(4) Date and time of restart. 
(5) Date and time of the normal termination had there been no 

failure. 
(6) Effect of failure on system performance. 
(7) Data and I/O load and any environmental factors. 
(8) Detailed narrative of the incident. 

Clearly this quality of data is only available from a highly formalised 
and controlled maintenance reporting system. It costs money to collect 
that level of information and, therefore, is only likely to be generated 
in a project where management are suitably enlightened as to its 
benefits in terms of reliability improvement and future maintenance 
planning. 

In many cases it is only possible to count the number of failures 
which have occurred in a given time or a given number of tests. Under 



www.manaraa.com

198 Engineering Quality Software 

these circumstances the calculation of metrics is highly unlikely. There 
still remains the problem that we are 'hung up' on the concept of time, 
which has no real relevance. We should be attempting to clock the 
number of new patterns or routes used within the system since the rate 
of change of these is the important factor. 

12.7 BENEFITS AND DRAWBACKS OF ASSESSING 
SOFTWARE 

12.7.1 Integrity Assessment 
Software integrity assessments are more and more frequently required 
as the application of programmable systems finds wider applications. 
In the case of safety-related systems the first step is to establish the 
boundary of the safety system and to define the failure modes to be 
considered. A qualitative assessment is then carried out by reviewing 
the quality-related features described in this book. The HSE docu­
ment, described in Section 5.4.1, provides one particular basis for 
assessment particularly for applications where failure results in hazard. 

There are, however, both benefits and drawbacks in carrying out 
these assessments. 

12.7.2 Benefits 
Confidence. By identifying and removing specific faults and by ob­

serving features of good design, confidence is established in the 
system. 

Feedback. Design faults are fed back and corrected at an early stage 
in the design cycle, thus minimising the cost of failure. 

Liability. In cases of fatality or personal injury the trend is towards 
absolute liability irrespective of negligence. The only defence, if EEC 
proposals are implemented, will be that of best endeavours having 
regard to the technology. Whilst not a total defence, software quality 
and integrity studies must surely make a positive contribution. 

12.7.3 Drawbacks 
Error rate versus fault tolerance. At the beginning of Chapter 10 

a comparison was drawn between a low error rate and the benefits of 
a fault-tolerant design. It is important that assessments do not con­
centrate on error prevention alone. 



www.manaraa.com

Quality-Can it be Measured? 199 

Relevance of parameters. Although the many aspects of software 
quality, described in Chapters 4 to 10, contribute to low error rate and 
to fault tolerance they are not a guarantee of no failures. There will be 
parameters which are not known and therefore not addressed in the 
assessment. 

Lack of metrics. The problem concerning metrics and certification 
was addressed in Sections 12.3 and 12.5. Since there is, as yet, no 
satisfactory simple way to quantify the 'quality' of a piece of software, 
assessments remain largely qualitative. 

False confidence. The lack of precision in assessing software has 
been stated. Nevertheless, there is a tendency to assume, merely 
because a system has been subject to audit and assessment, that it is 
therefore free of faults. This is clearly not so but remains a drawback 
associated with assessment. 



www.manaraa.com

Chapter 13 

The Role of the Software Engineer 

13.1 WHAT IS NEEDED 

The development of the computer industry over the last 30 years has 
been both rapid and characterised by change. In the Preface the major 
changes were summarised and this book has dealt with the effects of 
the new techniques involved. One factor that has remained almost 
constant, however, is the industry's reliance on the computer pro­
grammer. This reliance stems from the fact that computers are of no 
use without programs, or sequences of instructions, to execute. Thus, 
the programmer has found himself at the centre of the stage and, more 
often than not, is criticised for the frequent delays encountered during 
software development. A question worth raising is 'Is the programmer 
to blame?' 

The short answer is probably 'No'. The task of programming a 
computer, whether directly in machine code or in a high level 
language, is one of problem solving. For many years, and perhaps still, 
computer programmers have been drawn from a variety of disciplines 
and often trained from scratch with no specific educational require­
ments having been identified. 

The average data processing department has its sprinkling of 
graduates from various disciplines, and post 'A'-level students, as well 
as others with no formal qualifications at all. The skill which unites 
them is the ability to interpret problems in a way compatible with the 
computer. Clearly a mathematical background is useful in program­
ming the solution to a differential equation and an accounting 
background is useful when writing a sales ledger system. Nevertheless, 
the primary ability lies in translating an understanding of the problem 
into a new language-the programming language. Thus it would seem 

200 



www.manaraa.com

The Role of the Software Engineer 201 

a simple matter to provide the computer industry with the type of 
personnel it needs. This unfortunately is not the reality of the 
situation. 

One of the major problems facing the computer industry, including 
the current drive into 'information technology' and its applications, is 
the severe shortage of suitably 'experienced' rather than 'qualified' 
staff. The difference between 'experienced' and 'qualified' arises 
because the computer industry in particular is guilty of being very 
experience-specific when seeking staff. A cursory glance through the 
job advertisements will quickly reveal an emphasis, from every 
employer, on experience of specific languages and machines. This is 
due partly to the large variety of hardware, but in the main to a 
familiarity with this type of staffing philosophy. One solution would be 
for universities and polytechnics to provide more computer scientists 
but, unfortunately, it is here that another problem arises. The problem 
is one, as we have already seen, to which the industry is particularly 
prone-that of defining what is required. It seems that the problem of 
imprecise requirements (Chapter 6) is not confined to system design 
but also flavours the specifying of personnel skills. 

In the very early days of the business, the 'programmer' was more 
than likely a mathematician who also needed to know the intricacies of 
the hardware which he was attempting to program in low level 
machine code. Gradually, higher level languages appeared and the 
need for intricate hardware knowledge lessened. Ability to code, 
debug and test rapidly became predominant and there was a tendency 
to document the design after the event. Recognition of the problems 
inherent over the whole life-cycle have sharpened the view that 
formally qualified software engineers are needed. These engineers 
require formal instruction in the aspects of software development 
described in this book and the skills include: 

(a) Discrete mathematics. To tackle more formal specification 
methods and to use formal verification techniques. 

(b) Formal design methods. To provide traceability and main­
tenance information within the design. 

(c) Static and dynamic test methods. To verify, during design, the 
system being developed. 

(d) Microelectronics. To aid system understanding. 
(e) Social issues. So that social, safety and liability implications of 

the impact of complete systems are understood. 



www.manaraa.com

202 Engineering Quality Software 

Until a fully qualified software engineer, with the appropriate 
knowledge and skills, makes his appearance, the computer industry 
will remain experience-specific and the quality of computer software 
will remain low. The software engineer should become the driving 
force in determining standards for his own profession and thereby 
establish criteria for classification. 

It is only through this process that a profession, in the accepted 
sense, will be established. That the academic world seems currently 
incapable of satisfying this need is clear since only few establishments 
produce graduates of the type described. An initiative is needed to 
develop the basic standards upon which to base the professional 
software engineer. This requires that the academic bodies, the 
engineering institutions, industry and government all agree and 
implement the appropriate educational policy. Only through a more 
professional class of computer staff will the industry advance. The 
software engineer is not the only new professional needed. Systems 
engineers and quality engineers must also be trained with the 
necessary skills to contribute to the life-cycle in order to cope with the 
complex systems of the future. 

13.2 STRUCTURED TRAINING FOR A STRUCTURED 
DISCIPLINE 

The need has been stated for a new type of software engineer and Part 
3 of this book has described the structured and formal techniques, with 
their automated tools, which the programmer/engineer must acquire. 

The design-cycle has been presented as a formal and logical 
progression of requirements and design phases with appropriate 
feedback loops for verification and testing at each stage. 

It seems self-evident, therefore, that software engineering training 
should be similarly structured and should proceed in the same 
sequence of activities as the design-cycle. In this way the discipline of 
the design-cycle will be instilled into the engineer at the same time as 
encouraging an orderly decomposition and stepwise refinement of the 
problem. 

Three features of the training should be identified and defined at the 
planning stage when structuring a software training course. These are: 

(1) Knowledge. This may be defined in terms of areas such as those 
listed in Section 13.1. 



www.manaraa.com

The Role of the Software Engineer 203 

(2) Skills. These should be defined in behavioural terms. In other 
words each objective should describe a set of functions which the 
trainee will be able to perform as a result of the training. 

(3) Attitudes. This is the hardest area to define: it refers to the 
preconditioning which governs an engineer's response to the software 
tasks. 

The knowledge and skills can be related to the design-cycle and should 
enable the engineer to perceive and control the software problem. The 
principles of decomposition, modelling and structuring code then 
follow, supported by appropriate mathematical and support tools. The 
design cycle thus provides the areas for training: 

Requirements: 
Understanding the difference between what and how (Chapter 3). 
Handling requirements languages (Chapter 6). 

Design: 
Formal documentation and readability (Chapters 4, 7). 
Programming standards (Chapters 4, 7). 
Language familiarity (Chapter 9). 
Fault tolerance (Chapter 10). 

Review and test: 
Design review (Chapter 7). 
Code inspection and walkthrough (Chapter 7). 
Test strategy (Chapter 8). 
Static analysis (Chapter 8). 
Audit and subcontract (Chapter 11 and Exercise Chapter 14). 

Structured training has frequently been shown to produce software 
engineers/programmers whose performance is better in terms of errors 
by as much as an order of magnitude as well as their being better at 
meeting schedules. The shift is from error detection to error preven­
tion, and programmers, now engineers, acquire a sense of profes­
sionalism and of being in control. 

13.3 THE IMPORTANCE OF THE WORKING ENVIRONMENT 

One of the major reasons for the inadequacy of the software models 
discussed in Sections 12.3 and 12.4 is the large variation in perfor­
mance criteria for programmers. For this reason cost, schedule and 
reliability predictions are well-nigh impossible. 



www.manaraa.com

204 Engineering Quality Software 

It has been suggested that high- and low-performance groups tend to 
cluster in specific organisations. Whether this is true or not there is 
little conclusive information which might allow one to identify the 
reasons for anyone individual's performance. A number of likely 
factors have, nevertheless, been discussed: 

(a) Peer effects. In one controlled experiment randomly paired 
programmers carried out a particular software design task. It was 
observed that, whereas the performance across the group varied by a 
factor of 5.6:1, the variation between the two members of each pair 
was only 1.2:1. 

(b) Speed. The same study indicated that speed did not detract 
from quality. In fact the median-speed programmers produced the 
most defects whereas, surprisingly, both the faster and slower pro­
grammers generated fewer. 

(c) Workplace. It is fairly commonplace for programmers to criti-
cise their workplace in terms of: 

Noise. 
Privacy. 
Interruption. 
Ambiance. 

In general 50% are critical of each factor and tend to be pessimistic 
about the prospects of improvement. 

Studies show that the better performers correlate with the better 
perceived working environments. It is not clear whether the environ­
ment produces the improvement or if the better performers, by virtue 
of their performance, acquire the better conditions. Experiments have 
been conducted where moves to better conditions resulted in twofold 
improvements in performance. However, as Hawthorn showed in the 
1950s, industrial performance is usually improved by any change, be it 
for better or worse, since it is the fact of the change, rather than its 
nature, which stimulates performance. There is clearly much scope for 
study in this area in order to identify 'programmer metrics', or 
features, which correlate with performance. 

Nevertheless, performance and good environment are, for whatever 
reason, positively correlated and there is little excuse for not seeking 
the potential twofold improvement in quality and output which could 
result from addressing this much neglected area. 



www.manaraa.com

PART 5 

Exercise 

The following exercise presents a hierarchy of documents representing 
the requirements and the design of a detection system. It is seeded 
with errors (mostly deliberate) and some guidance is given to the 
reader in identifying them. Substantial contributions were made to this 
exercise by Dr Paul Banks and Mr John Dixon. 



www.manaraa.com

Chapter 14 

Software System Design Exercise­
Addressable Detection System 

This exercise is in the form of a set of documents covering the 
design-cycle of a simple system for the detection and annunciation of 
fire in an enclosed building. The design contains deliberate errors, 
omissions and ambiguities, some of which are obvious and others 
which will require more careful study to reveal them. The problem 
should be treated as a whole rather than as individual elements since 
the errors will often only be revealed by comparing requirements 
between documents. The documents include: 

-A Requirements Specification. 
-A Functional Specification. 
-A Software Specification. 
-Module and Sub-module Specifications. 
-A Quality Plan. 
-A Test Specification. 

In Chapter 4, the need for a traceable document hierarchy was 
emphasised. Figure 14.1 is an outline of the document structure for 
this design. Some of the document numbers and titles have been 
deliberately omitted. An initial scan of the documents in this section 
will provide the information needed to complete the chart. It is 
strongly recommended that this is attempted before proceeding with 
the exercise. 

The requirements and design documents which follow should be 
studied and compared with each other. The tutor's discussion notes 
near the end of this section describe some of the omissions, am­
biguities and errors in order to guide the reader. The remaining errors, 
including the not so deliberate, we leave to you. 

207 



www.manaraa.com

208 

I 
(Integration) 

Fig. 14.1. Documentation hierarchy. 

At the end of this section a revised functional specification (Issue 
2.0) is given. Although by no means a model solution, it takes into 
account some of the errors in Issue 1.0. 



www.manaraa.com

PD352/100 
Issue 1.0 
1.1.88 

REQUIREMENTS SPECIFICATION­
ADDRESSABLE DETECTION 

SYSTEM 

This document in no way represents an example document for use. Warning! 
Contains deliberate errors. For training purposes only. 



www.manaraa.com

1.0 OVERVIEW 

PD352/100 
Issue 1.0 
1.1.88 

A programmable detection system is required to provide both auto­
matic executive actions and annunciation to the user. It is used to 
control fire water sprinklers and plant shutdown equipment. The 
equipment is required for use in enclosed spaces. 

2.0 OBJECTIVES 

2.1 The system is protecting a hazardous plant and thus must provide 
continuous monitoring of inputs and must always fail safe. 

2.2 To provide visual and audible annunciation of detectors. 

2.3 To provide automatic initiation of executive outputs. 

3.0 OPERATING REQUIREMENTS 

3.1 Switch on and switch off must not cause spurious actions. 

3.2 Hardware failures of the equipment must automatically be 
detected, diagnosed and displayed to the operator. 

3.3 The system must be capable of tolerating up to 24 hours mains 
failure and respond to mains recovery without loss of function. 

3.4 The system must be capable of periodic automatic self test 
whereby the effect of simulated input signals is verified without loss of 
function. 

3.5 The equipment is to operate on 220/240 V mains 50 Hz. 

4.0 FUNCfIONAL REQUIREMENTS 

4.1 Inputs must respond to digital and analogue transducers. 

210 



www.manaraa.com

4.2 Inputs must be uniquely identifiable to the system. 

4.3 Outputs must consist of: 

(a) Signals to sprinkler systems. 
(b) Volt-free output loops. 
(c) Data to a display panel giving input status. 

4.4 Maximum I/O capacities are: 

(a) 80 digital inputs. 
(b) 80 analogue inputs. 
(c) 50, volt free outputs. 
(d) 50,24 V outputs. 

PD352/100 
Issue 1.0 
1.1.88 

(e) Provision for hardwired and RS232 interface to a graphics or 
mimic facility. 

4.5 Ability to group inputs into definable zones. 

4.6 A duplicated logic unit with the ability to initiate outputs on the 
basis of combinations and comparisons of the inputs of each zone. 

4.7 Ability to respond to the following stimuli: 

(a) Ultra violet light (25 ms duration). 
(b) Smoke (hydrocarbon fires). 
(c) Infra red light. 
(d) Temperature. 
(e) Rate of temperature rise. 

4.8 All applications software shall be implemented using a block 
structured language having an ISO standard version. 

5.0 ENVIRONMENT 

5.1 Ground fixed enclosed buildings. 

5.2 Ambient temperature range -lOoe to 35°e. 

211 



www.manaraa.com

5.3 Humidity to 95%. 

5.4 Near proximity of hydrocarbon process plant. 

6.0 OTHER REQUIREMENTS 

PD352/100 
Issue 1.0 
1.1.88 

6.1 The equipment must be repairable on line without total loss of 
function. A repair time objective of 1 hour is required. 

6.2 The system must be able to accommodate future extensions 
either by an increase of I/O capacity or by interworking duplicate or 
higher numbers of equipments. 

6.3 The probability of failure to respond to a valid input, on demand, 
shall not exceed 10-6 • 

6.4 The incidence of spurious action shall not exceed one incident 
per annum. 

6.5 A facility for logging events. 

6.6 The following standards and guidelines will be applied during 
design and manufacture. 

(a) BS5760. 
(b) BS5750 (Part 1) 1987. 
(c) STARTS Purchasers Handbook. 
(d) HSE Document-Programmable Electronic Systems in Safety 

Related Applications 1987. 

6.7 The equipment shall fit into an area 7 m x 3·5 m with a ceiling 
height of 2 m. 

6.8 The weight of the equipment including power supplies shall not 
exceed 500 Kg. 

212 



www.manaraa.com

PD352/200 
Issue 1.0 
1.1.88 

FUNCTIONAL SPECIFICATION­
ADDRESSABLE DETECTION 

SYSTEM 

This document in no way represents an example document for use. Warning! 
Contains deliberate errors. For training purposes only. 



www.manaraa.com

1.0 INTRODUCfION 

PD352/200 
Issue 1.0 
1.1.88 

1.1 The proposed system will perform the following functions: 

(a) Monitor the fire detectors to interrogate their status at one 
second intervals each. 

(b) Initiation of built-in test mode at system start up and at 
operator request. 

(c) Display status of each detector on a colour graphics screen. 
(d) Triggering of audible alarm in the event of fire detection. 
(e) Triggering of fire sprinkler systems and outputs to other control 

systems. 
(f) Self diagnosis of the computer system at start up to detect 

faults. 
(g) Printouts of system events. 
(h) The equipment shall be 220/240 V 50 Hz mains operated. 

1.2 The hardware configuration is as shown in Fig. 1.2. 

HARDWARE SCHEMATIC 

-----------------------------------
FIRE ZONEl 

BUS 

24V 

detecto~ 

.;.. 

C.P.U. 

VDU 

Fig. 1.2. Hardware schematic. 

214 

FIRE ZONE2 

detecto~ 

AUDIBLE 
ALARMS 



www.manaraa.com

2.0 FACILITIES AND FUNCTIONS 

PD352/200 
Issue 1.0 
1.1.88 

2.1 The system will allow connection of up to 127 detectors each of 
which is separately addressable. 

2.2 A graphical display will provide a visual mimic of the status of 
each detector with a 'picture' of its location. 

2.3 The audible alarm must be sounded when any event occurs. 

2.4 A YOU will duplicate the information displayed by the mimic. 

2.5 In the event of failure of the CPU the computer system will 
revert to the use of hardwired circuitry. 

2.6 The system will provide a start up mode of operation which will 
perform system checks and then go into normal operation. A system 
shut down mode will also be provided. 

2.7 During normal operation all events and operator commands will 
be logged on a disc. 

3.0 SYSTEM OPERA nON 

3.1 Operator Inputs 
The system will be operated via the computer system keyboard. 
Commands may be entered, singly, at the keyboard. The set of 
commands is: 

OIAG -Performs auto diagnosis on the computer system. 
DEST( (n» -Initiates detector self test where n denotes the 

detector. 
STAT«n» -Forces a report of all detectors' status or, if n is 

CANC 
LOG 
MIMC 

specified, a particular detector. 
-Shuts down audible alarm. 
-Prints all status changes since last system restart. 
-YOU reverts to zone mimic (see 3.3). 

It will not be necessary for the operator to input data except where 

215 



www.manaraa.com

Fig. 3.2. 

PD352/200 
Issue 1.0 
1.1.88 

required by a command. This will enhance the security and integrity of 
the system. 

At switch on, the system will require the entry of a password known 
only to the operator. Password validation will be allowed only three 
times within a minute and then an enforced 20 minute delay will begin. 

3.2 VDU Format 
The detectors will be polled sequentially and the VDU will normally 
display information in the form: 

Time 
xx:xx:xx 

Detector 
n 

Status 
OK 

Upon the command MIMC (see 3.1) this will be replaced with a 
zonal mimic (see Fig. 3.2). 

Activated detectors will be indicated by a change of colour and 
intermittent flashing. 

3.3 MIMIC 
The graphics panel will consist of groups of LED displays representing 
the fire zones and their individual detectors. 

3.4 Log File Layout 
The log file, held on disc, will contain all command and response 
information and also the result of system start up. Each message and 

216 



www.manaraa.com

response will be stored sequentially in the form: 

PD352/200 
Issue 1.0 
1.1.88 

(TIME, COMMAND, RESPONSE) (TIME, STATUS CHANGE) . 

3.5 Detection Logic 
There are two levels of detection logic. 

(a) A non-executive level which actuates the audible alarm and 
updates the VDU and mimic. This is normally triggered by the 
activation of a single detector. 
However the detection level shall be programmable by the user 
according to his requirements. 

(b) An executive level which is normally used for the activation of 
outputs associated with the fire suppression systems. A typical 
arrangement would be the voting of two inputs out of n. 

3.6 Executive Outputs 
These are triggered in response to the appropriate detection or manual 
inputs as pre-programmed during installation by the user. The 
executive outputs will consist of volt-free loops capable of switching 
24 v solenoids and of carrying 50 rnA. Both make and break conditions 
shall be available as the outputs. 

4.0 DESIGN, DEVELOPMENT AND TEST 

4.1 Hardware 
(a) A standard 16 bit micro-computer will be chosen for this system 

implementation using the MS-DOS operating system. Hardware 
peripherals will be as specified in PD352/300. 

(b) Suitable I/O units will be used to interface each detector with 
the binary bus to enable individual detector addressing. 

(c) Eurorack equipment practice will be used. 

4.2 Software 
(a) The Pascal language will be used for the coding of all software 

except where it is necessary to interface to hardware, where 
assembly code will be used. 

(b) A validated compiler will be used. 
(c) A standard real time operating system will be employed which 

217 



www.manaraa.com

PD352/200 
Issue 1.0 
1.1.88 

has disc file facilities embedded. No special tailoring of the 
package is expected. 

(d) The software developed for this system will be validated when 
the system is completely coded. In this way the testing will be 
more efficient and the problems more quickly resolved. For this 
reason configuration control will not be applied until this stage 
is completed. 

4.3 Test 
Since this is a small system only a minimal project plan will be 
produced. 

5.0 OPERATION AND MAINTENANCE 

5.1 The system will be attended by an operator who will be 
conversant with the output facilities. He or she will be capable of using 
the input commands. 

5.2 Printed board changes will involve system re-start. 

5.3 Detector changes will be possible without disenabling the system. 

5.4 Removal of a detector shall not result in any alarm state but must 
be indicated at the operator station. 

218 



www.manaraa.com

PD352/300 
Issue 1.0 
1.1.88 

HARDWARE TECHNICAL 
SPECIFICATION-ADDRESSABLE 

DETECTION SYSTEM 

This document in no way represents an example document for use. Warning! 
Contains deliberate errors. For training purposes only. 



www.manaraa.com

This document is not used in the case study 

220 

PD352/300 
Issue 1.0 
1.1.88 



www.manaraa.com

PD/400 
Issue 1.0 
1.1.88 

SOFfW ARE TECHNICAL 
SPECIFICATION-ADDRESSABLE 

DETECTION SYSTEM 

This document in no way represents an example document for use. Warning! 
Contains deliberate errors. For training purposes only. 



www.manaraa.com

1.0 OVERALL SOFTWARE DESIGN 

1.1 Strategy 

PD352/400 
Issue 1.0 
1.1.88 

The software shall be designed using top-down techniques and coding 
using structured programming. The major programming language will 
be ANSI Pascal except where assembler code shall be used for the 
purpose of speed requirements. 

Documentation will include use of an in-house pseudo-code to 
describe the top levels of the design, with successive levels decom­
posed into pseudo-code. The functional specification is described in 
document PD352/200 (Functional Specification). 

1.2 Design and Development Factors 
A standard real time operating system will be employed which has disc 
file facilities embedded. No special tailoring of the package is expected 
to be necessary. 

2.0 DETAILED SOFTWARE DESCRIPTION 

2.1 Top Level 
The software will be structured so that after initialisation of the system 
the main body of the program will run continuously until shut down. 

The modules defined within this document will each be the subject 
of a module design document. Test and QA are described elsewhere. 

2.2 Data Flow (Logical Design) 
The data flow within the system is described by Fig. 1. 

2.3 Software Systems Structure 
The overall systems structure is shown as Fig. 2. 

2.4 Control Flow 

2.4.1 The overall systems flow chart (flow control) 
This is shown in Fig. 3. 

2.4.2 The top level of design (pseudo code) 
The top level of design is shown, expressed in pseudo code, covering 
the overall top level systems flow chart. 

222 



www.manaraa.com

detector 
status 

(i) 

DISP' 

incident 
log 

Fig. 1. 

PD352/400 
Issue 1.0 
1.1.88 

The overall top level pseudo code will have the following structure: 

Supervisory module; 
Begin 

Initialise system; 
Perform diagnostic checks; 

Do Forever; 
For i = 1 to n (where n is the maximum number of detectors) 
Begin 
check status (i) 
check detector (i) 
set report 

End For 
End Do 

End Supervisory module; 

223 



www.manaraa.com

~ 

1 B
U

S 

E
qu

. s
tO

lt 

1 
1 

',
0 

E
xe

cu
ti

ve
 

O
Ic

tio
n

 

S
U

P
S

Y
S

 

3
·5

 
1 ID

is
p

 
1

1
D

is
P

' 

3
·6

 

F
ig

. 
2.

 
O

ve
ra

ll 
sy

st
e

m
 s

tr
u

ct
u

re
 c

h
a

rt
. 

N
o

te
 i

n
fo

rm
a

ti
o

n
 i

n
 d

a
ta

 d
ic

ti
o

n
a

ry
 (

2.
5)

. 

{c
o

m
m

a
n

d
s
} 

~
 
(i

j ..
.. '

O 
:-

>
1

1
1

0
 

C
O

C
C

A
l 

co
 C

D 
U

1 

=-
-~

 
o
~
 

o 



www.manaraa.com

2.5 Data Dictionary 

Item Type 

Integer Scalar 

Flag Boolean Scalar 

WK Boolean Scalar 

EQU- {Text Arrays 

STAT Boolean arrays} 

Text Array 

SA Boolean Array 

DISP Data Construct 

420 

PD352/400 
Issue 1.0 
1.1.88 

diag Fail 
check 

440 

Fig.3. 

Dimension Description 

Control counter for detector sampling 1 s 
isDMAX 

True if detectors working, else false 

True if detector[i) in working order, else 
false 

(to be decided) Message about outcome of initialisation. 
(to be decided) Logical Flags for outcome of various 

activities of initialisation. 

12 Date and time, i.e. DDMMYYhhmmss 

2[DMAX) Status array for detector fire status. 
For [i) s [DMAX) then SAj = TRUE ~ 
Fire detected else SAj = False 

[SAi, t, i) 

225 



www.manaraa.com

3.0 SOFfW ARE SYSTEM DESCRIPTION 

P0352/400 
Issue 1.0 
1.1.88 

The overall software shall be modular in construction, each module 
will be testable and address one particular subsystem of the complete 
software description. The major subsystems are given below with their 
corresponding documentation number. 

3.1 Supervisory System (PD352/41O) 
The purpose of this module is to amalgamate all lower levels of 
software within a cohesive whole. 

3.2 Initialise (PD352/420) 
The purpose of this module is to perform various checks at system 
start up: 
These functions are: 

-Run diagnostics on main computer. 
-Set up VDU and Graphics. 
-Inform the operator of system state. 

3.3 Diagnostic Check (PD352/430) 
The purpose of the diagnostic check module is to check the initial 
status of the detectors (a) before full operation and (b) at periodic 
intervals during operation. 

3.4 Do Forever Module (PD352/440) 
This loop is the principal mode of operation, it polls the detectors in 
sequence and reports on their status. Each pass will do the following: 

-Address detector. 
-Check detector operation. 
-Acquire status on fire detection. 
-Display status. 
-Report. 
-Check keyboard status. 
-Execute Command. 

226 



www.manaraa.com

The commands are: 

PD352/400 
Issue 1.0 
1.1.88 

DIAG -performs auto diagnosis on the computer system. 
DEST(n)-Initiates detector self-test where n denotes the detector. 
STAT(n)-Forces a report of all detectors status or if specified, a 

particular detector. 
CANC -Shut down audible alarm. 
LOG -Prints all status changes since last system restart. 

227 



www.manaraa.com

PD352/440 
Issue 1.0 
1.1.88 

SOFfW ARE TECHNICAL 
SPECIFICATION-ADDRESSABLE 

DETECTION SYSTEM 

DO FOREVER MODULE­
VERSION 001 

This document in no way represents an example document for use. Warning! 
Contains deliberate errors. For training purposes only. 



www.manaraa.com

1.0 MODULE DEFINITION 

PD352/440 
Issue 1.0 
1.1.88 

This loop is the principle mode of operation since it polls the detectors 
in sequence and reports on their condition. Each diversion through the 
loop will address the following sub-modules, each sub-module shown 
below is the subject of a software design document (written in 
pseudo-code for ease of understanding). 

1.1 Address the Detector (PD352/ 441) 
That is unless otherwise directed each detector will be addressed 
sequentially starting at detector 1 and progressing to detector n. 

1.2 Check Detector (PD352/442) 
Module will perform a basic diagnostic check on the addressed 
detector. 

1.3 Acquire status on fire detection (PD352/443) 
Fire status will be reported on a is fire detected basis. Polling will take 
place between detectors in the same zone as will voting. 

1.4 Display Status (PD352/444) 
This software module will indicate the presence of the detector and its 
status will be reported on the VDU. 

1.5 Report (PD352/445) 
This software module will record all status changes onto the disk drive. 

1.6 Check Keyboard (PD352/446) 
This module will check the keyboard for admissible input. 

1.7 Execute Command (PD352/447) 
This module will, on receipt of a significant input from the keyboard, 
execute a given command. 
The commands are: 

DIAG -Performs auto diagnosis on the computer system. 
DEST(n)-Initiates detector self-test where n denotes the detector. 
STAT(n)-Forces a report of all detectors status or, if specified, a 

particular detector. 

230 



www.manaraa.com

CANe -Shut down audible alarm. 

PD352/440 
Issue 1.0 
1.1.88 

LOG -Prints all status changes since last system restart. 

2.1 System Flowchart for Do Forever Loop 

Begin 

,--.----1 

Address I~ 
detector a 

14421 Fault 
'>----1 routine/ 

detect 
fire 

Display r::-::l 
Data I~ 
for i 

i<max 

Fig. 1. 

231 

report 



www.manaraa.com

2.2 Do Forever Module Code 
Begin {Main loop} 

Begin 
Address Detector (il; 

Begin 
Set address detector; 

Check detector; 
Begin 

Get detector data; 
if detector data? OK then; 
Set fault (i); 
End (Check detector); 

Detector status; 
Begin 

Get detector status; 
if detector status ?OK then; 

Set alarm (i); 
Begin; 

Set status (il = T, 
End (Set alarm); 

End (Detector status); 

Display data (i); 
Begin 

Set Graphics region (i, status, fault); 
End (Display data (ill 

Report data (i); 
Begin 

Send output data to log; 
Send outputto log; 

Send output to printer; 

DIAG: 

DEST: 

STAT: 
CANC: 
LOG: 
MIMC: 

End (Report data (ill 

Check Keyboard entry; 
Begin 

If command type then; 
Begin 

Do case of command; 
Perform diagnostics; 
Report results; 

Perform detector self test; 
Report results; 

Report all detector status; 
Cancel audible alarm; 
Print all status changes; 
Perform route to mimic; 
End (If) 

End (Check Keyboard entry) 
End {Main loop} 

232 

PD352/440 
Issue 1.0 
1.1.88 



www.manaraa.com

PD352/443 
Issue 1.0 
1.1.88 

SOFIW ARE TECHNICAL 
SPECIFICATION-ADDRESSABLE 

DETECTION SYSTEM 

DO FOREVER MODULE 
VERSION 001 

DETFIRE 
SUBMODULE 
VERSION 001 

This document in no way represents an example document for use. Warning! 
Contains deliberate errors. For training purposes only. 



www.manaraa.com

SUBMODULE DEFINITIONS 

1.0 PURPOSE 

PD352/443 
Issue 1.0 
1.1.88 

The module will interrogate the detector status line returning status: 

{FIRE / NO FIRE} 

for the given detector. 
And by a voting system involving detectors in the same zone, signals 
the detection of a systems status of fire. 

(a) Anyone detector; status = Fire, will provoke an audible alarm. 
(b) Any two or more detectors; status = Fire, in same zone will 

provide systems status equivalent to Fire, and provoke Fire 
executive action and will provide an audible siren. Fire execu­
tive action is the subject of another document and not ad­
dressed here. 

2.0 PSEUDO CODE DETECfION STATUS 

Definition of Terms 
Poll Detector (i) = Detector Status (i) 

= TRUE FIRE 
FALSE OK 

Begin 
Poll Detector (i) 
If detector Status (i) = TRUE Then 

Set Audible Alarm 
Do for all Other Detectors in same Zone 

End If 

If Detector Status iii = TRUE, for i = i, Then 
Set Executive Action 

End Do 
End If 

End ( ) 

Normally at this point in the documentation the module would be 
implemented in programming language. 

234 



www.manaraa.com

PD352/900 
Issue 1.0 
1.1.88 

QUALITY PLAN­
ADDRESSABLE DETECTION 

SYSTEM 

This document in no way represents an example document for use. Warning! 
Contains deliberate errors. For training purposes only. 



www.manaraa.com

CONTENTS 

1. INTRODUCTION 
2. INSPECTION INSTRUCfIONS 
3. TEST STRATEGY 
4. APPROVALS 
5. RELATED STANDARDS 

236 

PD352/900 
Issue 1.0 
1.1.88 



www.manaraa.com

3.0 TEST STRATEGY 

3.1 Strategy 

PD352/900 
Issue 1.0 
1.1.88 

The development testing will consist of a bottom up strategy. Printed 
Board Assemblies (PBAs) will initially be tested alone. This will be 
followed by integration tests involving groups of PBAs. Functional 
tests will then be carried out on the complete system. These will 
include I/O load tests and misuse tests. Finally an environmental test 
will be applied. 

3.2 PBA Module Tests 
Each PBA will be subject to a stand alone functional test on the 
programmable GENRAD XXXXX tester with simulated inputs pro­
grammed as appropriate. The PBA test specs are: 

PD352/911 
PD352/912 
PD352/913 
PD352/914 
PD352/915 

3.3 Integration Tests 

MOTHER BOARD 
CPU BOARD 
5 CCT I/O BOARD 
COMMUNICATIONS BOARD 
PSU 

The purpose of these tests is to establish that boards can communicate 
and function together. The integration test specs are: 

PD352/921 
PD352/922 

I/O-CPU INTEGRATION 
COMMS-CPU INTEGRATION 

237 



www.manaraa.com

3.4 Functional Tests 

PD352/900 
Issue 1.0 
1.1.88 

The functional test specs are: 

PD352/931 
PD352/932 
PD352/933 
PD352/934 
PD352/935 

SYSTEM FUNCfIONAL TEST 
I/O LOAD TEST 
SYSTEM MARGINAL TESTS 
MISUSE TESTS 
ENVIRONMENTAL TEST 

238 



www.manaraa.com

PD352/921 
Issue 1.0 
1.1.88 

I/O-CPU INTEGRATION TEST 
SPECIFICATION-ADDRESSABLE 

DETECTION SYSTEM 

This document in no way represents an example document for use. Warning! 
Contains deliberate errors. For training purposes only. 



www.manaraa.com

1.0 OBJECTIVE 

PD352/921 
Issue 1.0 
1.1.88 

To establish that input stimuli give rise to correct outputs whilst 
controlled by the CPU board. 

2.0 TEST HARDWARE AND SOFfW ARE 

2.1 I/O PBA with simulated inputs for three fire detectors and one 
manual call point (MCP). 

2.2 I/O PBA with simulated alarm and executive outputs. 

2.3 CPU PBA with application software including cause and effect 
logic for the simulated fire area. 

2.4 Test PBA (PD352/921/001) to simulate the communications 
PBA responses and thus prevent communications failure errors which 
would otherwise shut down the system. 

2.5 Communications analyser (XXXXXXXXXX) with connections 
to the CPU data bus. 

3.0 TEST PROCEDURE 

3.1 Start Up 
Connect power and switch on. 
Observe that no outputs are activated. 

3.2 Detector Sampling 
Set up and connect the communications analyser to the CPU address 
data bus. 
Observe that the three detectors and MCP addresses are polled at no 
less than 1 s intervals. 

3.3 Detector lOut of 3 Alarm 
Simulate one detector input. 
Observe simulated audible alarm output. 

240 



www.manaraa.com

Repeat the test for No 2 detector. 
Repeat the test for No 3 detector. 

3.4 Manual Call Point Executive Action 
Simulate the MCP input. 
Observe simulated executive action output. 

3.5 Detector 2 Out of 3 Executive Action 
Simulate Detectors 1 and 2 input. 
Observe simulated executive output. 
Repeat for Detectors 1 and 3. 
Repeat for Detectors 2 and 3. 
Repeat for all three detectors. 
Repeat for MCP and all three detectors. 

241 

PD352/921 
Issue 1.0 
1.1.88 



www.manaraa.com

TUTOR'S DISCUSSION 

Requirements Specification PD352/100 
1. There are a number of important items missing from this 
specification. The following are a few examples: 

-Extendability (6.2) should be quantified. 
-Maintenance scenario (e.g., frequency, type of on line repair). 
-Is equipment stand alone or connected to other control systems? 
-Several terms are not defined. 

Attempt to list additional omissions. 

2. There are many ambiguities, for example: 

-Fail Safe (2.1). Spurious action (6.4) is not necessarily safe. 
-Simulated (3.4) can involve a number of methods. 
-What sort of auto-test? 

Attempt to list additional ambiguities. 

3. Specifying a PES (Programmable Electronic System) in (1.0) is a 
design implementation-not a requirement. There are at least two 
other design decisions which should not be specified at this level. 
Attempt to identify them. 

Functional Specification PD352/200 (Issue 1.0) 
1. There are a number of items missing from this specification. The 
following are a few examples: 

-The test functions (1.1b) are not defined. 
-The heat, smoke, UV requirements are not brought forward from 

the requirements specification. 
-Mains failure recovery is not addressed. 
-Fig. 1.2 shows no output ports on the processor. 

Attempt to list additional omissions. 

2. There are many ambiguities, for example: 

-'Mimic' and 'Graphics' are not defined. 
-'Self diagnosis' (1.lf) is not clear. 
-(2.1) should include the word sequentially. 

243 



www.manaraa.com

Attempt to list additional omissions. 

3. The requirements specification calls for auto-test (RS 3.4) but the 
FS calls for operator initiated test. 

4. The functional specification is still too early in the hierarchy to 
specify design details such as PES and Disc. 

4. MS-DOS is not a real time operating system. 

Attempt to identify other errors. 

Hardware Technical Specification PD352/300 
In order to keep the exercise within reasonable bounds, a hardware 
specification is not given. It is where the details of PES type 
(erroneously mentioned above) should be found. 

Software Technical Specification PD352/400 
1. There are a number of items missing from this document. The 
following are a few examples: 

-No arrows in Fig. 3. 
-No watchdog facility. 
-No power down sequence provision. 
-MIMe missing in 3.4. 

Attempt to list additional omissions. 

2. There are ambiguities, for example: 

-There is a mixture of graphical methods. THIS IS DELIBERATE 
IN ORDER TO ILLUSTRATE SOME OF THE POSSIBLE 
DESIGN METHODOLOGIES. 

-The meanings of 'various' (3.2), 'cohesive' (3.1) etc. 

3. The DO FOREVER does not return to the diagnostic in 2.4. 

4. Assembler is called for in (1.1) for speed whereas the functional 
specification (4.2) justifies it on the basis of interfaces. 

Attempt to identify other errors. 

244 



www.manaraa.com

DO FOREVER Module PD352/440 
1. Examples of items omitted are: 

-MIMe command on page 1. 
-No arrows on Fig. 1. 

2. There is no voting carried out in the module. 

3. If the nth detector is faulty (Fig. 1) then the n + lth is never 
reached. 

4. The seven modules in 1.0 do not map those in PD352/400. 

Attempt to identify other errors. 

DETFIRE Sub-module PD352/443 
1. There is no export of status to the voting module in the 443 
subsystem. 

2. Detector status implies 'fire' or 'no fire'. Other states such as 
'under maintenance' and 'failed auto-test' need to be considered. 

Quality Plan PD352/900 
1. Only dynamic testing is specified. Reviews and static analysis are 
not addressed. 

2. Test strategy only maps the hardware configuration. 

Attempt to identify other shortcomings. 

Test Procedure PD352/921 
1. The tests do not specify the expected result. Thus, there can be no 
objective pass/fail criteria. 

2. Tests do not specify what should NOT happen. 

Attempt to find other shortcomings. 

245 



www.manaraa.com

PD352/200 
Issue 2.0 
2.1.88 

FUNCTIONAL SPECIFICATION­
ADDRESSABLE DETECTION 

SYSTEM 

This document in no way represents an example document for use. Warning! 
Contains deliberate errors. For training purposes only. 



www.manaraa.com

1.0 INTRODUCfION 

PD352/200 
Issue 2.0 
2.1.88 

1.1 The proposed system will perform the following functions: 

(a) Monitor each of the fire detectors at one second intervals to 
interrogate their output status. 

(b) Initiation of built-in test mode at system start up during normal 
operation and at operator request. This involves auto test of 
detector and output loops and incorporates a diagnostic check 
of the equipment. 

(c) Display status of each detector on a colour graphics screen. 
(d) Triggering of audible alarm in the event of fire detection. 
(e) Triggering of fire sprinkler systems and outputs to a shut down 

system. 
(f) Self diagnosis of the computer system at start up to detect faults 

(see 3.7). 
(g) Printouts of alarms. 
(h) The equipment shall be 220/240 V 50 Hz mains operated. 

1.2 The hardware configuration is as shown in Fig. 1.2. 

I ~,~; ;;,~;; --FIRE ZONE2 

detectors 

ulv111 u/v 2/1 smoke 212 u/v 212 smoke 3/1 

----------------~~----------------. 
24V 

c.P.U. 
1 

Fig. 1.2. 

248 

AUDIBLE 
ALARMS 



www.manaraa.com

2.0 FACILITIES AND FUNCTIONS 

PD352/200 
Issue 2.0 
2.1.88 

2.1 The system will allow connection of up to 160 detectors each of 
which is separately addressable. There may be UV, smoke (hydrocar­
bon fires), infra red, temperature and rate of rise detectors. 

2.2 A graphical display will provide a visual mimic of the status of 
each detector with a picture of its location. (See Fig. 3.2). 

2.3 The audible alarm must be sounded when one or more detectors 
activates. 

Alarms must differentiate between one detector or a zonal state of 
two or more. 

2.4 A VDU will duplicate the information displayed by the mimic. 

2.5 In the event of failure of the computer control. The system will 
revert to the use of hardwired circuitry. 

2.6 The system will provide a start up mode of operation which will 
perform system checks and then go into normal operation. A system 
shut down mode will also be provided. 

2.7 All events and operator commands will be logged on a per­
manent medium. 

2.8 There shall be two alarm states 

(a) Level indicating a single detector only. 
(b) Multiple alarm determined by preset zonal voting arrange­

ments, resulting in alarm and executive action. 

3.0 SYSTEM OPERATION 

3.1 Operator Commands 
The system will be operated via the computer system keyboard. 
Commands may be entered, singly, at the keyboard. The set of 

249 



www.manaraa.com

commands is: 

PD352/200 
Issue 2.0 
2.1.88 

OIAG -Performs auto diagnosis on the computer system. 
OEST( (n) )-Initiates detector self test where n denotes the 

detector. 
STA T( (n) )-Forces a report of all detectors' status or, if n is 

CANC 
LOG 
MIMC 
TIME 

specified, a particular detector. 
-Shuts down audible alarm (protected by a key switch). 
-Prints all status changes since last system restart. 
-YOU reverts to zone mimic (see 3.2). 
-Time and date change input. 

No other data input will be accepted by the system. 

Use of these commands will require the entry of a password known 
only to the operator. Password validation will be allowed only three 
times within a minute and then an enforced 20 minute delay will begin. 
A separate password will be required to enable the use of the CANC 
command. 

3.2 VOU Format 
The detectors will be polled sequentially· and the VOU will normally 
display information in the form of Fig. 3.2. 

Activated detectors will be indicated by a change of colour and 
flashing at 1 s intervals. Upon the command STAT this will be replaced 

zone 

lO~ 1:*1 
~ 

Fig. 3.2. 

250 



www.manaraa.com

with a list of the states of the first 20 detectors in the form: 

Time 
xx:xx:xx 

xx:xx:xx 

Detector 
No: Type: 

No: Type: 

Status 
OK 
ALARM 

Subsequent commands will display blocks of 20 detectors. 

3.3 MIMIC 

PD352/200 
Issue 2.0 
2.1.88 

The graphics panel will consist of groups of LED displays representing 
the fire zones and their individual detectors. 

3.4 Log File Layout 
The log file, will contain: 

(i) all commands 
(ii) response to commands 
(iii) detector response 
(iv) result of system start up. 

in the form: 

(TIME, COMMAND, RESPONSE) (TIME, STATUS CHANGE). 

3.5 Detection Logic 
There are two levels of detection logic, corresponding with states in 
2.8{a) and 2.8{b). 

(a) A non-executive level which actuates the audible alarm and 
updates the VDU and mimic. This is normally triggered by the 
activation of a single detector. 
However the detection level shall be programmable by the user 
according to his requirements. 

(b) An executive level which is normally used to activate outputs of 
the fire suppression systems (e.g. halon, fire pumps). A typical 
arrangement would be the voting of two inputs out of n. 

3.6 Executive Outputs 
These are triggered in response to the appropriate detector input or 
manual input as has been pre-programmed during installation by the 
user. 

251 



www.manaraa.com

PD352/200 
Issue 2.0 
2.1.88 

The executive outputs will consist of volt free loops capable of 
switching 24 V solenoids and of carrying 50 mA. Non-executive 
outputs comprise the VDU and graphics. Both make and break 
conditions shall be available as the output state. 

3.7 Diagnostic Details 
The auto test facility will perform the following checks. 

(a) Simulated detector inputs whilst outputs disenabled. 
(b) Simulated output signals whilst output function is disenabled. 
(c) Cause and effect logic functional checks. 
(d) Memory read/write checks. 

4.0 DESIGN, DEVELOPMENT 

4.1 Hardware 

(a) A micro-computer will be chosen for this system implementa­
tion using an appropriate real time operating system. Hardware 
peripherals will be as specified in PD352/300. 

(b) Suitable I/O units will be used to interface each detector with 
the binary bus to enable individual detector addressing. 

(c) Eurorack equipment practice will be used. 
(d) The PSU will consist of a battery float arrangement with 

capacity to provide a 24 h backup in the event of mains failure. 

4.2 Software 

(a) A high level language will be used for the coding of all software 
except where it is necessary to interface to hardware, where 
assembly code will be used. 

(b) A validated compiler will be used. 
(c) A standard real time operating system will be employed which 

has disc file facilities embedded. No special tailoring of the 
package is expected. 

252 



www.manaraa.com

5.0 OPERATION AND MAINTENANCE 

PD352/200 
Issue 2.0 
2.1.88 

5.1 The system will be attended by an operator who will be 
conversant with the output facilities. He or she will be capable of using 
the input commands. 

5.2 Printed board changes will involve re-start up of the system. 

5.3 Detector changes will be possible without disenabling the system. 
Removal of a detector shall not result in any alarm state but must be 
indicated at the operator station. 

253 



www.manaraa.com

Checklist Application Chart 

This chart indicates the areas of application for each of the checklists 
in the book. Each checklist number indicates the chapter in which it 
can be found. 

255 



www.manaraa.com

A
ct

iv
it

y 
M

an
ag

em
en

t 
D

oc
um

en
ta

tio
n 

D
es

ig
n 

P
ro

gr
am

m
in

g 
D

es
ig

n 
C

od
e 

Te
st

 a
nd

 
C

ha
ng

es
 

(4
.1

) 
(4

.2
,4

.3
) 

fe
at

ur
es

 
st

an
da

rd
s 

re
vi

ew
 

in
sp

ec
tio

n 
in

te
gr

at
io

n 
(4

.4
) 

(1
0.

1)
 

(4
.5

) 
(7

.1
) 

(7
.2

) 
(8

.1
) 

P
re

de
si

gn
 

* 
S

pe
ci

fi
ca

ti
on

 
* 

* 
O

ve
ra

ll
 d

es
ig

n 
* 

* 
* 

D
et

ai
l 

de
si

gn
 

* 
* 

* 
* 

C
od

in
g 

* 
* 

* 
* 

* 
* 

* 
T

es
t a

nd
 i

nt
eg

ra
ti

on
 

* 
* 

* 
* 

* 
* 

S
ub

co
nt

ra
ct

ed
 

so
ft

w
ar

e 
* 

* 
* 

* 
* 

* 
* 

* 



www.manaraa.com

Glossary of Terms 

The following is an explanation of the main terms used in software and 
systems engineering. There are many glossaries in the various docu­
ments described in Chapter 5 which address this subject and it could 
be argued that there is no need for yet another. However, this list 
attempts to combine the available glossaries in the authors' words and 
to offer a comprehensive coverage of the terms. It is split into groups 
of words, and the words in each group are in alphabetical order. The 
final section of the glossary gives the meanings of some common 
abbreviations. The groups are: 

(A) Terms connected with failure. 
(B) Terms connected with software. 
(C) Terms connected with software systems and their hardware. 
(D) Terms connected with procedures, management and 

documents. 
(E) Terms connected with test. 
(F) Common abbreviations. 

(A) TERMS CONNECTED WITH FAILURE 

Availability 
What is usually referred to as availability is the steady availability. It is 
the proportion of time that the system is not in a failed state. 

Bit Error Rate 
The rate of incidence of random incorrect binary bits. This usually 
refers to the effect of corruption in a communication channel. 

257 



www.manaraa.com

258 Engineering Quality Software 

Bug 
A slang expression for a software fault (see Fault). 

Common-Cause Failure (Common Mode Failure) 
Both terms refer to the coincident failure of two or more supposedly 
independent terms as the result of a single cause. This is especially 
relevant in systems incorporating redundancy where one event causes 
the coincident failure of two more normally independent channels. 

Data Corruption 
The introduction of an error by reason of some alteration of the 
software already resident in the system. This could arise from 
electrical, magnetic or ionising interference or from incorrect process­
ing of a portion of the software. 

Error 
An error has occurred when the software in the system reaches an 
incorrect state-a bit or bits in the program or in data take incorrect 
values. This can arise as a result of outside interference or because of 
faults in the program. An error is caused by a fault and may propagate 
to become a failure. Error recovery software may thus prevent an 
error propagating. 

Error Recovery Software 
Sections of a program, involving redundant (Parity) bits or checksums, 
which can recognise and correct some bit errors. 

Failure 
Termination of the ability of an item (or system) to perform its 
specified task. In the case of software the presence of an Error is 
required in order for it to propagate to become a failure. 

Failure Rate 
The number of Failures, per unit time, of an item. Since software 
failures are path- rather than time-related this is not a particularly 
useful parameter except for hardware failures. 

Fault 
Faults may occur in hardware or in software. Whereas hardware faults 
are time-related, software faults are conditions which may lead to bit 



www.manaraa.com

Glossary of Terms 259 

Errors in the system. These faults may be ambiguities or omissions in 
the logic structure of the program or environmental/hardware condi­
tions which can cause software corruption. 

The presence of a software fault does not necessarily guarantee that 
an Error and Failure will ensue. 

Fault Tolerance 
Hardware and software features (discussed in Chapter 10) which 
render a software system less likely to Fail as a result of software 
Faults. 

Graceful Degradation 
A design feature whereby a system continues to operate, albeit at a 
reduced efficiency or with fewer functions available, in the presence of 
Failures. 

Integrity 
The ability of a system to perform its functions correctly when 
required. The term 'integrity' is usually associated with safety systems. 

Intrinsic Safety 
A degree of Integrity designed into a system in order to meet defined 
safety criteria. 

Maintainability 
The probability that a failed item (or system) will be restored to 
operational effectiveness within a specified time and when the repair 
action is carried out according to prescribed procedures. The para­
meter is often expressed by reference to a Mean Down Time (MDT) 
or Mean Time To Repair (MTTR). 

Reliability 
The probability that an item will perform a required function, under 
stated conditions, for a stated period of time. System reliability is 
often described by reference to parameters such as failure rate and 
mean time between failures. Since software reliability cannot easily be 
quantified, these terms are better applied to hardware alone. 

(8) TERMS CONNECTED WITH SOFTWARE 

Algorithm 
A set of logical rules for the solution of a defined problem. 



www.manaraa.com

260 Engineering Quality Software 

Alpha Numeric 
A code or description consisting of both alphabetic and/or numerical 
characters. 

Application Language 
A problem-oriented language whose statements closely resemble the 
jargon or terminology of the particular problem type. 

Application Software 
The software written for a computer for the purpose of applying the 
computer functions to solve a particular problem. This is distinct from 
the resident operating software which is part of the computer system. 

Assembler 
A program for converting instructions, written in mnemonics, into 
binary machine code suitable to operate a computer or other program­
mable device. 

Assembly Language 
A low level language where the instructions are expressed as mnemo­
nics and where each instruction corresponds to a simple computer 
function. 

Basic Coded Unit (BCU) 
Often referred to as a Module, a self-contained manageable element of 
a program which fulfils a specific simple function and is capable of 
being compiled and run. The BCU should be at a sufficiently simple 
level to permit its function to be described by a single sentence. 

Baud 
The unit of signal speed where 1 baud corresponds to 1 information bit 
per second. This is equivalent to the bit speed in a binary system 
where each bit can take either of two values (0 or 1). In multilevel 
signalling the baud rate will be higher than the bit rate. 

Binary Coded Decimal 
A binary notation whereby each decimal digit is represented by a 
four-bit binary number (e.g. 10010011 represents 93). 

Bit 
A single binary digit taking the value 0 or 1. 



www.manaraa.com

Glossary of Terms 261 

Code 
Any set of characters representing program instructions or data in any 
computer language. 

Code Template 
A standard piece of proven code, for a particular function, which is 
used repetitively. 

Compiler 
A program which, in addition to being an Assembler generates more 
than one instruction for each statement, thereby permitting the use of 
a High level language. It consists of: 

Lexical analyser (recognises the words); 
Syntax analyser (recognises logical commands); 
Semantic analyser (sorts out the meaning); 
Code generator (generates the Os and Is). 

Data Base 
Any set of numerical or alphabetical data. 

Data-flow Diagram 
The next stage after the requirements specification involves data-flow 
analysis. The data-flow diagram is a graphic (usually flow) diagram 
showing data sources and the flow of data within a program. 

Decision Table 
The representation of a number of decision options showing the 
various outcomes. This is usually shown in matrix or tabular form. 

Default Value 
The value of a variable which will be assumed when no specific input is 
given. 

Diversity 
One form of diversity is said to exist when the redundancy in a system 
is not identical. In software terms this would apply if redundant 
channels had been separately programmed. The disadvantages of this 
are discussed in Section 10.1. 

Another form of diversity exists when an alternative means is 



www.manaraa.com

262 Engineering Quality Software 

available for a particular function to be performed despite the failure 
of the main function. 

Dump 
To transfer the contents of a store or memory to an external medium. 

Global Data 
A major named group of data which serves as a common base between 
various tasks in a program. It will be accessible to all modules. 

High Level Language 
A means of writing program instructions using symbols, each of which 
represent several program steps. High level languages do not reflect 
any particular machine structure and can be compiled to any computer 
for which a Compiler exists for that language. 

Initialisation 
The process whereby a system, usually at switch-on, is put into the 
correct software state to commence operation. 

Interpreter 
A type of Compiler which enables one instruction at a time to be 
checked and converted into machine code. This permits step-by-step 
programming at the VDU. Syntax errors are then announced as they 
occur. 

Language 
The convention of words, numerals, punctuation and grammar which 
enables programs to be written in a form comprehensive to a 
computer. 

Listing 
A printed list of the coded program instructions. A listing is usually of 
the Source code. 

Machine Code 
See Object code. 

Metrics 
Parameters for describing the structure, size and complexity of a 
program. Attempts are made to relate these metrics, by regression 
techniques, to software quality (see Chapter 12). 



www.manaraa.com

Glossary of Terms 263 

Mnemonic 
Characters used to represent a particular instruction. Low level 
languages use mnemonics in their instructions. 

Module 
The basic testable unit of software (see also Basic coded unit). 

Multi-tasking 
The ability of a computer system to carry out more than one task, 
apparently simultaneously. 

Object Code 
The final machine code, probably the output from a Compiler, which 
the computer can understand. Programming directly in machine code 
is now extremely rare. 

Operating System 
The machine resident software which enables a computer to function. 
Without it, applications programs could not be loaded or run. 

Parity 
An additional bit or bits which are added to a segment of data or 
instruction to enable subsequent checking for error. The value of the 
parity bits is generated from the values of the bits which it is 
'protecting' . 

Pseudo Code 
High level 'English' language statements which provide an intermedi­
ate level between the module specification and the computer language. 

Procedure 
An identifiable portion of a program which carries out a specific 
function. A procedure may be a module. 

Program 
A set of coded instructions which enable a computer to function. A 
program may consist of many modules and be written in assembly or 
high level language. Note the spelling 'program', whereas 'programme' 
is used to describe a schedule of tasks. 



www.manaraa.com

264 Engineering Quality Software 

Routine 
A frequently used piece of code which is resident inside a program. 

Software 
The term software covers all the instructions and data which are used 
to operate a computer or programmable system. It includes the 
operating system, compiler, applications software and test programs. 
The definition also embraces the documents (specifications, charts, 
listings, diagrams and manuals) which make up the system. 

Source Code 
The listing of a program in the language in which it was written. 

Structured Programming 
Well-defined and standardised programming techniques which result in 
greater visibility of the program and less complexity. 

Syntax 
Rules which govern the use and order of instructions in a language. 

Task 
A sequence of instructions which together carry out a specific function. 

Translator 
A program which transforms instructions from one language into 
another. 

(C) TERMS CONNECTED WITH SOFTWARE SYSTEMS 
AND THEIR HARDWARE 

Analogue/Digital Converter 
A device which converts an analogue electrical value (voltage or 
current) into an equivalent binary coded form. 

Applications Hardware 
A special-purpose unit designed, as a peripheral to the computer, to 
carry out some specified function. 

Asynchronous 
A timing arrangement whereby each event is started as a result of the 
completion of preceding events rather than by some defined trigger. 



www.manaraa.com

Glossary of Terms 265 

Bus 
A digital signal path (or highway). 

Configuration 
A complete description, at a point in time, of a product and the 
interrelationship of its parts. This includes the hardware, software and 
firmware and is a description of its characteristics. Both physical parts 
and performance are described. 

Configuration Baseline 
A specific reference point, in time, whereby the Configuration is 
described. All changes are then referred to that baseline. 

Configuration Item 
A collection of hardware and software which forms a part of the 
Configuration. 

Digitall Analogue Converter 
The opposite of an Analogue / digital converter. 

Disc 
See Magnetic disc. 

Diversity 
An attempt at fault tolerance whereby redundant units are separately 
designed and coded in order to reduce common mode software 
failures. See also Section B of this glossary. 

Ergonomics 
The study of man/machine interfaces in order to minimise human 
errors due to mental or physical fatigue. 

Firmware 
Any software which is resident on physical media (e.g. hardwired 
circuitry, EPROM, PROM, ROM, disc). 

Interrupt 
The suspension of processing due to a real time event. The program is 
so arranged that processing continues after the interrupt has been 
dealt with. 



www.manaraa.com

266 Engineering Quality Software 

LSI-Large Scale Integration 
The technology whereby very large numbers of circuit functions are 
provided on a single component. A programmable system may consist 
of one or more LSI devices. 

Magnetic Disc 
A rotating circular lamina with a magnetic coating which can record 
binary bits by means of magnetic storage. 

Magnetic Tape 
A tape with a magnetic coating which can record binary bits by means 
of magnetic storage. 

Media 
A collective term for the devices on which software programs are 
stored (e.g. PROM, EPROM, ROM, disc, tape). 

Memory 
Storage (usually binary) in a computer system. 

Microprocessor 
The central processing unit of a computer (usually contained on a 
single device) consisting of memory registers, an arithmetic and logic 
unit, program and instruction registers and some interface to the 
external world. 

Modem 
An acronym for MOdulator/DEModulator. It converts binary signals 
into frequency form for transmission over telecommunications chan­
nels and vice versa. 

'N' Version Programming 
See Diversity. 

Peripheral 
Any piece of equipment, apart from the computer achitecture of logic 
and memory, which provides input or output facilities. 

PES-Programmable Electronic System 
Any piece of equipment containing one or more components providing 
a computer architecture such that the functions are provided by a 



www.manaraa.com

Glossary of Terms 267 

program of logical instructions. The term is increasingly used in the 
context of the control, monitoring and protection of plant. 

PLC-Programmable Logic Controller 
A computer system with real time inputs and outputs. It is provided 
with a special-purpose problem-oriented language and is increasingly 
used in the control of plant and processes. 

Programmable Device 
Any piece of equipment containing one or more components providing 
a computer architecture with memory facilities. 

Real Time System 
A computer system (including PES, PLC) which operates in response 
to on-line inputs and stimuli. 

Redundancy 
The provision of more than one piece of equipment for achieving a 
particular function. 

Active redundancy. All items operating prior to failure of one or 
more. 
Standby redundancy. Replicated items do not operate until needed. 

Safety Critical Software 
Software whereby one or more failure modes can have hazardous 
consequences. 

Safety-related System 
One or more systems upon which the safety of a plant or process 
depends. 

Synchronous 
An arrangement whereby logical steps or processes in a program are 
only initiated as a result of a reference clock rather than as a result of 
preceding events being completed. 

Terotechnology 
An integrated approach to the overall optimisation of life-cycle costs 
and resources. 



www.manaraa.com

268 Engineering Quality Software 

Watchdog 
A part of the system (may be hardware or software) which monitors 
the state of the processor and signals when tasks are not completed 
within a prescribed time. 

(D) TERMS CONNECTED WITH PROCEDURES, 
MANAGEMENT AND DOCUMENTS 

Acceptance 
The act whereby a user states to a supplier that the product is now 
satisfactory. This acceptance may be partial in that agreed outstanding 
modifications or rectifications are to be implemented. 

Archiving 
Storing programs, data and documents externally to the computer 
system either for security ·(in the event of corruption) or for later 
resumption of design. 

Bureau 
The facility where computer processing facilities and software pack­
ages are offered for hire. 

Code Inspection 
The design review activity wherein members of the design team, other 
than the programmer/designer, examine a module of code against 
standards in order to reveal faults. 

Code Walkthrough 
The design review activity wherein the programmer/designer partici­
pates in leading other members of the team through a module of code. 
They then attempt to discover faults by questioning. 

Configuration Control 
The discipline that ensures that all changes and modifications to the 
Configuration baseline (see Part C of this glossary) are controlled and 
recorded and that, as a result, documents and firmware conform to 
issue status. 



www.manaraa.com

Glossary of Terms 269 

Design Review 
A formal comparison of the software and hardware with the specifica­
tions in order to establish conformance. Code inspections and 
walkthroughs are part of this process, which may be carried out at 
many stages in the design. 

Feasibility Study 
A preliminary study of some proposed solution to requirements in 
order to establish viability apropos of cost, schedule, function, 
reliability, etc. 

Flowchart 
A graphical representation of the logic and data flow which satisfies 
a specification. Normally coding would follow from the flowchart. 
Modern structured languages have much reduced the need for this 
technique. 

Library 
The formal documentation and software storage within an 
organisation. 

Life-cycle 
The complete series of activities from requirements specification, 
through design and test, to field use and modification. 

Quality Assurance 
The total range of activities which attempt to ensure that a finished 
product, both in design and manufacturing respects, meets the 
requirement. 

Quality System 
A formal set of procedures, methods and standards whereby the 
management of design and manufacture seeks to operate Quality (see 
Section 5.3). 

Release 
The issue of software after it has been formally validated by design 
review. 

Requirement 
A statement of the problem or function required by the user. 



www.manaraa.com

270 Engineering Quality Software 

Specification 
A document, at one of the levels in the hierarchy of design, which 
describes either requirements or solutions (see Chapters 4 and 5). 

(E) TERMS CONNECTED WITH TEST 

Acceptance Testing 
Testing carried out specifically to demonstrate to the user that the 
requirements of the functional specification have been met. 

Development System 
Usually a VDU, keyboard and computer equipped with appropriate 
support software in order to test and debug programs. 

Diagnostic Software 
A program which assists in locating and explaining the causes of faults 
in software. 

Emulation 
A type of simulation whereby the simulator responds to all possible 
inputs as would the real item and generates all the corresponding 
outputs. 

Endurance Test 
Extreme testing whereby the software is subjected to abnormal and 
illegal inputs and conditions and saturation levels which stress the 
program capabilities in terms of data volume and rate, processing 
time, response time, utilisation of memory, etc. 

Integration 
The step-by-step process of testing where each module is tested alone 
and then in conjunction with others until the system is built up. 

Load Test 
See Endurance test. 

Simulation 
The representation, for test purposes, of a unit or system by hardware 
or by software in order to provide some or all inputs or responses. 



www.manaraa.com

Glossary of Terms 271 

Soak Test 
A test where a system is submitted to prolonged periods of operation, 
often at elevated temperature and humidity. 

Static Analyser 
A suite of software which analyses code (see Section 8.7). 

Stress Test 
See Endurance test. 

Test Driver 
See Test harness. 

Test Harness 
Specially designed hardware and software used to replace parts of the 
system not yet developed and in order to permit testing of available 
modules to proceed. 

Test Software 
Any program used as a test aid. 

Validation 
The process of ensuring that the results of the whole project meet the 
original requirements. 

Validator 
A suite of programs which examines a computer program and 
determines if certain types of fault exist (see Section 8.7; see also Static 
analyser). 

Verification 
The process of ensuring that the result of a particular phase meets the 
requirements of the previous phase. 

AID 
APSE 
ASCII 
AT 

(F) COMMON ABBREVIATIONS 

Analogue to Digital 
Ada Project Support Environment 
American Standard Code for Information Interchange 
Arbejdstilsynet, Denmark 



www.manaraa.com

272 

ATE 
BCD 
BCU 
BIA 

BS 
CAD 
CCF 
CCITT 

CMF 
CPU 
D/A 
EBDIC 
EC 
EMA 
emi 
EPROM 
HSE 
INRS 
I/O 
IPA 

IPSE 
ISO 
LCD 
LED 
LSI 
NCSR 
PERT 
PES 
PLC 
PPD 
PROM 
QC 
RAM 
RISC 
ROM 
SBD 
VDU 

Engineering Quality Software 

Automatic Test Equipment 
Binary Coded Decimal 
Basic Coded Unit 
Berufsgenossenscbaftliches Institut fur Arbeitssicherheit, 
Germany 
British Standard 
Computer-Aided Design 
Common-Cause Failure 
Committe Consultative International pour Telegraph et 
Telecommunications 
Common Mode Failure 
Central Processing Unit 
Digital to Analogue 
Electronic Binary Decimal Information Code 
ElektronikCentralen, Denmark 
Extended Memory Addressing 
Electromagnetic Interference 
Erasable Programmable Read Only Memory 
Health and Safety Executive 
Institut National de Recherche et de Securite, France 
Input/Output 
FraunhOfer Institut fUr Produktionstechnik und Automati­
sierung, Germany 
Integrated Program Support Environment 
International Standards Organisation 
Liquid Crystal Diode 
Light-Emitting Diode 
Large-Scale Integration 
National Centre of Systems Reliability 
Programme Evaluation and Review Technique 
Programmable Electronic System 
Programmable Logic Controller 
Predefined Process Diagram 
Programmable Read Only Memory 
Quality Control 
Random Access Memory 
Reduced Instruction Set Computers 
Read Only Memory 
Schematic Block Diagram 
Visual Display Unit 



www.manaraa.com

Bibliography 

1 BRITISH STANDARDS 

British Standards Institute, 
Sales Department, 
Linford Wood, 
Milton Keynes, 
MKI46LE. 

BS 3527 Glossary of Terms used in Data Processing. 
BS 4058 Data Processing Flow Chart Symbols, Rules and Conventions. 
BS 4778 Glossary of Terms used in Quality Assurance (Including Reliability 

and Maintainability Terms). 
BS 5345 Code of Practice for the Selection, Installation and Maintenance of 

Electrical Apparatus for Use in Potentially Explosive Atmospheres 
(Other than Mining Applications or Explosive Processing and 
Manufacture) . 

BS 5476 Specification for Program Network Charts. 
BS 5515 Code of practice for the Documentation of Computer Based 

Systems. 
BS 5783 Code of Practice for the Handling of Electrostatic Sensitive Devices. 
BS 5887 Code of Practice for the Testing of Computer Based Systems. 
BS 5905 Specification for Computer Programming Language-CORAL 66. 
BS 6238 Code of Practice for Performance Monitoring of Computer Based 

Systems. 
BS 6488 Code of Practice for Configuration Management of Computer Based 

Systems. 

2 UK DEFENCE STANDARDS 

Defence Standards are obtained from The Directorate of Standardisation, 
Ministry of Defence, Montrose House, 187 George Street, Glasgow GllYU, 
UK. 

273 



www.manaraa.com

274 

Def-Stan 00-13 

Def-Stan 00-14 
Def-Stan 00-16/1 
Def-Stan 00-17 

Def-Stan 00-18 
Def-Stan 00-19 
Def-Stan 00-21 
Def-Stan 05-47 

Def-Stan 05-57 

Def-Stan 05-67 

IECCA 

EQD 
JSP343 

JSP 188 

DOD STD 2167 
MIL-S-52779A 

MIL-HDBK-344 

MIL-STD-1750A 

Publication 78-53 

ADatP-2 (B) 

IEEE 729 
IEEE 830 
IEEE 730 1984 

Engineering Quality Software 

Achievement of Testability in Electronic and Allied 
Equipment. 

Part 1 Guide. 
Part 2 Production and Acceptance Testing. 

Guide to the Defence Industry in the use of ATLAS. 
Guide to the Achievement of Quality in Software. 
Modular Approach to Software Construction Operation 
and Test (MASCOT). 
Avionic Data Transmission Interface System (five parts). 
The ASWE Serial Highway. 
M700 Computers. 
Computer On-Line Real-Time Application Language­
CORAL 6(r-Specification for Compilers. 
Configuration Management-Requirements for Defence 
Equipment. 
Guide to Quality Assurance in Design (Section 12 of this 
guide deals with computer software and the quality as­
surance thereof). 
A Guide to the Management of Software-Based Systems for 
Defence, 3rd Edition (Available from the address given in 
Section 5.4.16). 
Guide for Software Quality Assurance. 
MOD Standard for Automatic Data Processing (this 
Standard is to be published in five volumes and to the 
best of our knowledge only Volume I-Documentation 
Standard Manual is currently available). 
Specification and Requirements for the Documentation of 
Software in Operational Real-Time Computer Systems. 

3 US STANDARDS 

Defense System for Software Development. 
-US Military Specification-Software Quality Assurance 
Program Requirements. 
US Military Handbook-Evaluation of a Contractor's 
Software Quality Assurance Program. 
Military Standard: 16 Bit Computer Instruction Set 
Architecture. 
Standard Practices for the Implementation of Computer 
Software, Jet Propulsion Laboratory, Pasadena, CA 
91103, USA. 
NATO Glossary of Automatic Data Processing (ADP) 
Terms and Definitions. 
Standard Glossary of Software Engineering Terminology. 
Guide to Software Requirements Specifications. 
Software Quality Assurance Plans. 



www.manaraa.com

IEEE 754 1985 
IEEE 828 1983 
IEEE 829 1983 
IEEE 854 1987 
IEEE 983 1985 
IEEE 990 1987 
IEEE 10021987 
IEEE 1003.11988 

IEEE 10081987 
IEEE 1012 1986 
IEEE 1016 1987 
IEEEP982 
IEEE 416 

Bibliography 

Binary Floating-Point Arithmetic. 
Software Configuration Management Plans. 
Software Test Documentation. 
Radix & Format independent floating-point arithmetic. 
Software Quality Assurance Plan. 
Ada as a Program Design language. 
Taxonomy for Software Engineering Standards. 

275 

Std Portable Operating System Interface for Computer 
Environment. 
Software Unit Testing. 
Software Verification & Validation Plans. 
Software Design Descriptions. 
Draft Standard, Measures for Reliable Software. 
Definition of Abbreviated Test Language for All Systems­
ATLAS (formerly ARINC 416). 

4 OTHER STANDARDS AND GUIDELINES 

Establishing a Quality Assurance Function for Software, Electronic Engi­
neering Association Guide. 

Software Configuration Management, Electronic Engineering Association 
Guide. 

Quality Assurance of Software, Electronic Engineering Association Guide. 
Code of Practice for the Avoidance of Electrical Interference in Electronic 

Instrumentation and Systems, J. H. Bull, ERA 75-31, available from ERA 
Technology Ltd, Cleeve Road, Leatherhead, Surrey KT22 7SA, UK. 

Guidelines for the Documentation of Software in Industrial Computer 
Systems, The Institution of Electrical Engineers, Savoy Place, London, WC2R 
OBL, UK, 1985. 

Guidance on the Safe Use of Programmable Electronic Systems in Safety 
Related Applications, Health and Safety Executive, UK, June 1987. 

Volume 1: An Introductory Guide. 
Volume 2: General Technical Guidelines. 

Guide to User Needs for Technical Documentation (Engineering), 
Engineering Equipment and Materials Users' Association Handbook No. 36, 
1982. 

Guide to the Engineering of Microprocessor Based Systems for Instrumenta­
tion and Control, Engineering Equipment and Materials Users' Association 
Handbook No. 38, 1981. 

Contracts for the Acquisition and Utilisation of Computer Software for 
Industrial Control and Monitoring Systems, British Electrical and Allied 
Manufacturers' Association, Legal Department Publication No. 240, 1982. 

Electromagnetic Compatibility for Industrial-Process Measurement and 
Control Equipment. 



www.manaraa.com

276 Engineering Quality Software 

Part 1: General introduction. IEC Publication 801-1. 
Part 2: Electrostatic discharge requirements. IEC. 

Publication 801-2. 
Part 3: Radiated electro-magnetic-field requirements. IEC Publication 801-3. 

5 BOOKS 

Characteristics of Software Quality, Boehm et al., North Holland, Amster­
dam, 1978. 

Documentation of Software Products, J. D. Lomax, National Computing 
Centre Publications, Manchester, 1977. 

Elements of Programming Style, B. W. Kernighan and P. J. Plaugez, 
McGraw Hill, New York, 1978. 

Penguin Dictionary of Computers, Anthony Chandor, Penguin, London, 
1977. 

Practical Reliability Engineering, 2nd edn, P. D. T. O'Connor, Wiley, 
Chichester, 1981. 

Reliability and Maintainability in Perspective, 3rd edn, David J. Smith, 
Macmillan, London, 1988. 

Safety and Reliability of Programmable Electronic Systems, B. K. Daniels, 
Elsevier Applied Science Publishers, London, 1986. 

Software metrics, T. Gilb, Brookfield, London, 1982. 
Software Requirements Specification and Testing, T. Anderson, Blackwell 

Scientific Publications, London, 1985. 
Structured programming, Dahl, Dijkstra and Hoare, Academic Press, New 

York. 



www.manaraa.com

Ada, 143, 145, 149, 152-4, 184 
Addressable detection system, 

207-53 
ALGOL 60, 156 
Alvey programme, 180-1 
APL,156 
AQAP 1, 54, 57 
AQAP2,57 
AQAP 13, 57 
AQAP 14, 57 
Artificial intelligence, 156 
ASPECT,180 
Assembler programming, 150 
Audit, 48, 175-8 

checklists, 177 
implementing, 177-8 
objectives, 175-6 
planning, 176-7 
report, 178 

Automation, 80 
controls, 73 
design methodologies, 92-3 
management tools, 173-4 
project management, 173-4 
review of code, 74 
specification and design, 73-4 

BASIC, 155 
Bolt-on systems, 13 
BOOKMARK, 187 
Bottom-up design, 35 
Bought-in software, 47 
British Standard 3527, 73 
British Standard 4058, 73 
British Standard 5476, 73 

Index 

277 

British Standard 5515, 73 
British Standard 5750, 56 
British Standard 5887, 73 
British Standards, 273 
Brown and Lipow model, 196 
Buffers, 162 
Bugs, 16 

C language, 155 
CASE (computer aided software 

engineering), 74, 189 
CEC collaborative project, 69, 183 
Certification, 196-7 
Change control 

checklists, 51-2 
configuration management, and, 

39-41 
Checklists 

advantages and disadvantages, 48 
application chart, 255 
approach,7 
audit, 177 
change control, 51-2 
design review, 106-7 
documentation hierarchy and 

control,50 
fault tolerance, 169 
hardware design, 169 
inspections, 108 
product documentation, 50-1 
programming standards, 52 
quality management, 49 
software design, 168-9 
test and integration, 130 
walkthroughs, 108 



www.manaraa.com

278 Index 

Checksum techniques, 164, 166 
CICS, 157 
COBOL, 144, 152, 155 
Code metrics, 193 
Codes of practice, 57 
COMMAND. COM, 188 
Common abbreviations, 271-2 
Common-cause failure, 159 
Comparator circuit, 162 
Compilation, 150 
Compiler evaluation, 152-3 
Computer architecture, 11, 12 
Computer programming, 7 
Concurrency, 149 
Confidence, 198 
Configuration management, 26, 64-5, 

105 
change control, and, 39-41 

CORAL 66, 114, 155 
CORE (Controlled Requirements 

Expression),83-4 
Cost distribution, 10 
Custom software, 47 

Data communications, 165-6 
Data dictionary, 225 
Data loss, 186-7 
Data theft, 185-6 
Defence systems 

software development, 70 
software management, 70 

Degraded modes, 166 
Design 

cycle, 94-6 
definition, 25 
documentation, 35-9 
expenditure, 10 
methodologies, 88-92 
process, 94-6 
review, 26, 46, 100-2 

checklists, 106-7 
standards, 26 
see also Software design 

Detection logic, 217, 251 
DETFIRE sub-module, 245 
Development notebooks, 39 
Diverse software, 161 

Documentation, 
hierarchy, 207 

checklists, 50 
industrial computer systems, 61-3 
standards, 26 
terms connected with (glossary), 

268-70 
DO FOREVER module, 245 
Dynamic analysis, 111 
Dynamic testing, 110, 125-8 

tools for, 127-8 

ECLIPSE, 180 
Electromagnetic interference (emi) , 

162 
ELSE command, 165 
Engineering approach, 7 
Engineering discipline and software 

design, 7-8 
Error, 

check routines, 158 
correction, 164-5 
definition, 16 
detection, 163-4 
prevention, 161-3 
rate, 198-9 

ESPRIT programme, 182 
Estimating, 178-80 
EWICS TC7, 69, 182-3 
Executive outputs, 217, 251-2 

Failures, 3,12-21,80-1 
analysis, 21 
causes, 167 
data acquisition, 197-8 
definition, 15-16 
distribution, 21 
distribution modelling, 194-6 
fault/error/failure concept, 16 
feedback,27 
hardware, 5, 159 
hazardous, 20 
modes, 163 
prevention costs, 9 
protection against, 20 
second-hand events, 4 



www.manaraa.com

Index 279 

Failures-contd. 
statistical prediction, 21 
terms connected with (glossary), 

257-9 
FASTBACK 187 
Fault tolerance, 158-69, 198-9 

checklists, 169 
strategies for achieving, 158 

Faults, causes of, 16-18 
FDL (Functional Description 

Language), 124 
Feedback, 27, 198 
FETCH,13 
Field experience and history, 48 
Fire detection and annunciation, 207 
Flow analysers, 124 
Flow diagrams, 43 
FOCUS, 157 
Formal requirements languages, 80-1 
Formal verification, 105-6 
FORTH,157 
FORTRAN, 143-5, 147 
FORTRAN 77, 155 
Functional requirements, 210-11 
Functional specification, 37-8, 

214-18,243,248-53 

Gas industry, 71 
Global data, 42 
GOTO statements, 42, 43, 100, 148, 

190 
Guidelines, 59-73, 275 

Hardware 
configuration, 214 
design, 7 

checklists, 169 
design development and test, 217, 

252 
failure,S, 159 
problems, 34 
reliability, 6 
technical specification, 20, 244 

Hazardous applications, 161 
Hazardous failure, 20 
Hierarchical diagrams, 43 

High integrity systems, 166-7 
Hope, 151 
Hybrid metrics, 193 

Industrial computer systems, software 
documentation, 61-3 

Information technology, 201 
Inspections, 102, 103 

checklists, 108 
walkthroughs, 110 

Integrated Program Support 
Environments (IPSEs), 28 

Integration tests, 126-7 
Integrity assessments, 198 
I/O integration test specification, 

40-41 
IORL (Input/Output Requirements 

Language), 83 
ISO 9001,58 
IT-STARTS, 181-2 

Jelinski Moranda model, 194 
JSD (Jackson System Development), 

89 
JSEP (Joint Software Engineering 

Programme), 185 

LDRA,124-5 
Liability, 198 
Library functions, 41 
Life-cycle, 22-9 

diagrammatic form, 22 
management, 179 
model,191 
new focus on, 78-9 
review, 103 

LISP, 144, 156 
Litigation, 188-9 
Littlewood and Verral model, 195 
Log file, 216, 251 

Mainframe computing, 12 
Mains-borne interference, 166 
Maintenance, 218, 253 



www.manaraa.com

280 

MALPAS, 58,105,106,112-22,167 
MALPAS 1, 131 
MALPAS2,132 
MALPAS 3, 133-134 
MALPAS 4, 134 
MALPAS 5,135 
MALPAS 6,135 
MALPAS 7, 136-137 
MALPAS 8,138 
MALPAS 9,138 
MALPAS 10,138 
MALPAS 11, 139 
MALPAS 12, 140 
MALPAS 13,141-142 
MALPAS 14, 142 
Management, terms conncected with 

(glossary), 268-70 
Management tools, automation, 

173-4 
MANTIS, 157 
MASCOT (Modular Approach to 

Software Construction, 
Operation and Test, 65, 88 

MCC programme, 184 
Memory capacity, 163 
Memory check, 164 
Metrics, 21, 178-80, 191-4, 197, 199 
Microcomputers, 13 

safety devices, 68 
Microprocessing, 13 
Military operational real-time 

computer systems, 66 
Military systems, 166 
MIMIC, 251 
Minicomputers, 12 
Modifications, 6, 8, 21 
Modula 2, 145, 152, 154-5 
Module definition (documentation 

and code package) standard, 
97-8 

Module definitions, 39 
Module development, 43 
Module specification, 38, 42 

standard, 96-7 
Module tests, 125-6 
MS-DOS, 217 
Multi-application feature, 11 
Multi-tasking, 149 

Index 

Musa model, 195 

Nassi-Shneiderman diagrams, 43 
NATO Standards. See AQAP 
Newspeak compiler, 167 
Nordic factory inspectorates, 68 
N version programming, 161 

OBJ,86 
Object oriented design (OOD), 91-2 
OCCAM,146 
Off-the-shelf software, 47 
Operating requirements, 210 
Operator commands, 249-50 
Override principle, 20 

Pascal, 143, 147, 152-4,217 
Performance tests, 127 
Personal computers, 13 
Personnel skills, 201 
Petri-nets, 91 
Pipelining architectures, 13 
PL/1, 156 
PL/M,156 
Predefined Process Diagram (PPD), 

83 
Procedures, terms connected with 

(glossary), 268-70 
Product documentation, checklists, 

50-1 
Product liability, 188 
Production tests, 127 
Program structures, 148 

levels of, 150 
Programmable detection system, 210 
Programmable devices, advantages 

and disadvantages, 14-15 
Programmable electronic systems 

(PES), 18, 59-61, 71 
Programmable systems, 12-15 

safety-related, 20 
Programmer-related metrics, 193-4 
Programmer versus software 

engineer, 77-8 



www.manaraa.com

Programming languages, 143-57 
areas of application, 153-7 
choice, 145 
classification, 143-5, 151 
currently available, 153-7 
declarative, 143, 151-2, 156-7 
design, 149-50 
fourth generation, 157 
future trends, 151-2 
imperative, 143 
object oriented, 157 
procedural, 153-6 
real-time, 146-8 

Programming standards 26, 41-4, 
96-100 

checklists 52 
Project management 173-89 

automation, 173-4 
PROLOG, 144, 151, 156 
PROM,41 
Pseudo code, 43 
PSL/PSA (Problem Statement 

Language/ Analyser), 91 

Quality 
achievement, 25-7 
adherence, 4 
approach,33-52,174-5 
assurance, 28-9 

EQD guide, 72 
guidelines, 63, 64 
program requirements, 73 

circles, 175 
concept, 3-11 

definition, 3 
elusive element of, 5-6 
time conflict, and, 8-10 

control, 7, 28-9 
costs, 8 
definition, 28-9 
disciplines, 7 
management, 33 

checklists, 49 
manuals, 28 
measurement, 190-9 
organisation, 34-5 
plan, 34-5, 236-8, 245 

Index 281 

Quality-contd. 
problem, 5 
procedures, 28 
programmes, 180-5 
requirements, 3 
service, 174 
staff,34 
systems, 33-4, 54-8, 174-5, 191 

future needs, 73 
tasks, 4 

RACE,185 
Real-time applications, 13 
Real-time languages, 146-8 
Real-time STARTS, 71-3,181-2 
Real-time systems, 71-3, 149 

guidelines, 70 
Recovery sequence, 165 
Redundancy, 159 

two-out-of-three, 159, 160 
Reinitialisation, 165 
Relay runner technique, 164 
Reliability 

costs, 8 
see also Fault tolerance; Software 

Rendezvous, 149 
REQUEST, 182 
Requirements matrices, 39 
Requirements specification, 210-12, 

243 
Reviews, 102, 103 
RISC (Reduced Instruction Set 

Computers), 13 
R-nets, 86 
ROMs, 164 
Royal Signals and Radar Research 

Establishment (RSRE), 167 
RSL (Requirements Statement 

Language),86 

SADT (Structured Analysis and 
Design Technique-Ross), 
89-90 

Safety 
assessments, 68 . 
microcomputer system devices, 68 



www.manaraa.com

282 

Safety-critical software, 18-19 
Safety-critical systems, 11 
Safety-related applications, 20, 59-

61, 71 
Scheduling, 179 
Schematic Block Diagram (SBD), 

83 
Schneidewind model, 196 
Second-hand events, 4 
Seeding and Tagging model, 196 
Semantic analysers, 124 
Shooman model, 195-6 
SIGMA,185 
Simulated modules, 47 
Single-circuit architecture, 11 
SLIM (Software Life-Cycle 

Management), 179 
SMALLTALK,157 
Software 

approval and certification, 
standards and regulations, 
67-8 

assessment, 198-9 
bought-in, 47 
coding standard, 98-100 
configuration management 

guidelines, 26, 39-41, 64-5, 
105 

description, 222-5 
diversity, 161 
documentation, industrial 

computer systems, 61-3 
implementation, standard 

practices, 72 
life-cycle. See Life-cycle 
management, defence systems, 70 
off-the-shelf, 47 
problems, 34 
process--craft or science, 6-7 
reliability, 5, 7 

modelling, 21 
quantifying, 21 

security, 185-8 
subcontracted, 47 
system description, 226 
system design exercise, 207-53 
technical specification, 222-7, 

230-34,244 

Index 

Software-contd. 
terms connected with (glossary), 

259-64 
testing. See Test 

Software design, 6, 8, 24, 191 
checklists, 168-9 
engineering discipline, and, 7-8 
specification, 38 
strategy, 222 

Software design development, 252 
test, and, 217 

Software development, 178-9, 188-9 
defence systems, 70 
weapon systems, 72 

Software engineer 
role of, 200-4 
versus programmer, 77-8 

Software engineering 
defining requirements, 77-93 
standards, 66-7 

Software Engineering Institute (SEI), 
184 

Software failures. See Failures 
Software Plant Project (SPP), 185 
Software Productivity Consortium 

(SPC),184 
Software systems, terms connected 

with (glossary), 264-8 
SPADE, 58, 105, 106, 124, 167 
Specifications 

definition, 25 
languages, 83-6 
requirements, 3, 4, 7, 8, 81-2 
structured hierarchy, 35 
see also individual specifications 

and applications 
SQL (Structured Query Language), 

157 
SREM (software requirements 

engineering methodology), 86 
SSA (Structured System Analysis­

De Marco), 90-1 
SSADM (Structured Systems 

Analysis and Design 
Methodology),88-9 

Standards,53-74,275 
evolution, 53-4 
need for, 53 



www.manaraa.com

Index 283 

Standards-contd. 
programming, 96-100 
see also specific standards and 

guidelines 
STARS (Software Technology for 

Acceptable, Reliable 
Systems), 184 

Start-up activities of software project, 
65 

STARTS (Software Tools for 
Application to Real-Time 
Systems), 71-3, 181-2 

Static analysis, 110-25 
Structure metrics, 193 
Structured box diagrams, 43 
Structured programming, 42-4 
Stubs, 47 
Subcontracted software, 47 
Subsystem specifications, 38 
System design, 24 
System failure rate, 159 
System operation, 215-18, 249-53 
System reliability. See Fault 

tolerance; Software 
System requirements, specifications, 

81-2 
System tests, 127 

Tags, 83 
Test, 

effectiveness ratios, 128 
integration, and, 26-7, 46-7 

checklists, 130 
limitations, 109-10 
management, 128-9 
methods, 80 
procedures, 129, 245 
records, 129 
reports, 129 
results, 80 
specifications, 8, 129 
strategy, 110-11 
system, 127 
terms connected with (glossary), 

270-1 
utilities specification, 129 

TESTBED (LDRA) 124-5 

Three channels with two-out-of-three 
voting, 160-1 

Timing tolerances, 163 
Top-down methodology, 22, 24, 35, 

148 
Training requirements, 202-3 
Two channels 

with comparator, 160 
with self-test, 160 

UK Defence Standards, 273-4 
00-16,57-8 
00-55,20,58 
05-21,54-6 
05-67,73 

UNIX, 155 
US Standards, 274 
User requirements specification, 35-7 
Utility requirements specification, 39 

Validation, definition, 94 
VDM (Vienna Development 

Methodology),84-5 
VDU format, 216, 250-1 
Vendor appraisal, 47-8 
Verification, definition, 94 
VIPER (Verifiable Integrated 

Processor for Enhanced 
Reliability), 167 

Viruses, 187-8 
VISTA,167 
Von Neumann architecture, 12 

Walkthroughs, 102, 104-5 
checklists, 108 
inspections, 110 

Warnier diagrams, 43 
Waterfall model, 22 
Weapon systems, software 

development, 72 
Working environment, 203-4 

XTREE,187 

Z notation, 85-6 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




